Tag Archives: electric motor reducer

China OEM 100W 1/8HP Ratio 100K Three Phase 380V Small AC Electric Gearbox Reducer Induction Reduction Motor with high quality

Product Description

3 Phase AC Reducer Motor 1/2hp 220V 380V 400W Gear Precision Foot Mounted Reducer Motor

CV and CH series motor can be designed as Single phase and 3 phases type. And power range is from 0.1KW to 3.7KW. The motor can be mounted with brake, and brake type is No excitation type. Material of gears is advanced special alloy steel and all gears are carburizing hardening. This gear motor has been added with senior lubricants, and no needs to added lubricants again.

Helical gear reducer has the characteristics of strong versatility, good combination, and strong bearing capacity, and has the advantages of easy access to various transmission ratios, high efficiency, small vibration, and high allowable axial and radial loads.

This series of products can not only be used in combination with various reducers and vibrators to meet the requirements, but also has the advantage of localization of related transmission equipment.
 

Mostly used in metallurgy, sewage treatment,chemical, pharmaceutical and other industries.

 

Type CH series  three phase or single phase ac motors for industrial use 
Voltage 220VAC, 380VAC, 415VAC
Power range Power range is 0.1KW to 3.7KW
Output Speed Speed range is from 7rpm to 500rpm
Phase Single phase and 3phases for choice
Gears Special alloy steel and high precise gears
Grease Good grease and no need add grease during using
Cooling Full closed fan
USE This motor is widely used in
packing machine, textil machine
motor is widely used in mix 
machine,elevator, conveyor,etc.
OEM Service We offer OEM service.

  

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Bevel Gear
Step: Three-Step
Samples:
US$ 70/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

Are there environmental considerations associated with the use of AC motors?

Yes, there are several environmental considerations associated with the use of AC motors. These considerations are primarily related to energy consumption, greenhouse gas emissions, and the disposal of motors at the end of their life cycle. Let’s explore these environmental considerations in detail:

  • Energy Efficiency: AC motors can have varying levels of energy efficiency, which directly impacts their environmental impact. Motors with higher efficiency convert a larger percentage of electrical energy into useful mechanical work, resulting in reduced energy consumption. By selecting and using high-efficiency AC motors, energy usage can be minimized, leading to lower greenhouse gas emissions and reduced reliance on fossil fuels for electricity generation.
  • Greenhouse Gas Emissions: The electricity consumed by AC motors is often produced by power plants that burn fossil fuels, such as coal, natural gas, or oil. The generation of electricity from these fossil fuels releases greenhouse gases, contributing to climate change. By employing energy-efficient motors and optimizing motor systems, businesses and individuals can reduce their electricity demand, leading to lower greenhouse gas emissions and a smaller carbon footprint.
  • Motor Disposal and Recycling: AC motors contain various materials, including metals, plastics, and electrical components. At the end of their life cycle, proper disposal or recycling is important to minimize their environmental impact. Some components, such as copper windings and steel casings, can be recycled, reducing the need for new raw materials and energy-intensive manufacturing processes. It is crucial to follow local regulations and guidelines for the disposal and recycling of motors to prevent environmental pollution and promote resource conservation.
  • Manufacturing and Production: The manufacturing and production processes associated with AC motors can have environmental implications. The extraction and processing of raw materials, such as metals and plastics, can result in habitat destruction, energy consumption, and greenhouse gas emissions. Additionally, the manufacturing processes themselves can generate waste and pollutants. Motor manufacturers can mitigate these environmental impacts by adopting sustainable practices, using recycled materials, reducing waste generation, and implementing energy-efficient production methods.
  • Life Cycle Assessment: Conducting a life cycle assessment (LCA) of AC motors can provide a holistic view of their environmental impact. An LCA considers the environmental aspects associated with the entire life cycle of the motor, including raw material extraction, manufacturing, transportation, use, and end-of-life disposal or recycling. By analyzing the different stages of the motor’s life cycle, stakeholders can identify opportunities for improvement, such as optimizing energy efficiency, reducing emissions, and implementing sustainable practices.

To address these environmental considerations, governments, organizations, and industry standards bodies have developed regulations and guidelines to promote energy efficiency and reduce the environmental impact of AC motors. These include efficiency standards, labeling programs, and incentives for the use of high-efficiency motors. Additionally, initiatives promoting motor system optimization, such as proper motor sizing, maintenance, and control, can further enhance energy efficiency and minimize environmental impact.

In summary, the environmental considerations associated with the use of AC motors include energy efficiency, greenhouse gas emissions, motor disposal and recycling, manufacturing processes, and life cycle assessment. By prioritizing energy efficiency, proper disposal, recycling, and sustainable manufacturing practices, the environmental impact of AC motors can be minimized, contributing to a more sustainable and environmentally conscious approach to motor usage.

induction motor

How do AC motors contribute to the functioning of household appliances?

AC motors play a crucial role in the functioning of numerous household appliances by converting electrical energy into mechanical energy. These motors are used in a wide range of devices, powering various components and performing essential tasks. Let’s explore how AC motors contribute to the functioning of household appliances:

  • Kitchen Appliances: AC motors are found in various kitchen appliances, such as refrigerators, freezers, dishwashers, and blenders. In refrigerators and freezers, AC motors drive the compressor, which circulates the refrigerant and maintains the desired temperature. Dishwashers use AC motors to power the water pumps, spray arms, and the motorized detergent dispenser. Blenders utilize AC motors to rotate the blades and blend ingredients.
  • Laundry Appliances: AC motors are integral to laundry appliances like washing machines and clothes dryers. Washing machines rely on AC motors to power the agitator or the drum, facilitating the washing and spinning cycles. Clothes dryers use AC motors to rotate the drum and operate the blower fan, facilitating the drying process.
  • Vacuum Cleaners: Vacuum cleaners utilize AC motors to generate suction and drive the motorized brush or beater bar. These motors power the fan or impeller, creating the necessary airflow for effective cleaning.
  • Fans and Air Circulation: AC motors are employed in various types of fans, including ceiling fans, table fans, and pedestal fans. These motors drive the fan blades, producing airflow and facilitating air circulation to provide cooling or ventilation in rooms. Additionally, AC motors power exhaust fans used in kitchens, bathrooms, and range hoods to remove odors, smoke, or excess moisture.
  • Air Conditioning and Heating Systems: AC motors are critical components in air conditioning and heating systems. They power the compressor, condenser fan, and blower fan, which are responsible for circulating refrigerant, dissipating heat, and delivering conditioned air throughout the house. AC motors enable the regulation of temperature and humidity levels, ensuring comfort in residential spaces.
  • Garage Door Openers: AC motors are utilized in garage door openers to drive the mechanism responsible for opening and closing the garage door. These motors generate the necessary torque to lift or lower the door smoothly and efficiently.
  • Other Appliances: AC motors are also found in a variety of other household appliances. For instance, they power pumps in water heaters, swimming pool filters, and sump pumps. AC motors are used in dehumidifiers, humidifiers, and air purifiers to drive the fans and other internal components. They are also present in audiovisual equipment, such as DVD players, record players, and fans used for cooling electronics.

In summary, AC motors are essential components in household appliances, enabling their proper functioning and delivering the mechanical energy required for various tasks. From kitchen appliances to laundry machines, fans, air conditioning systems, and more, AC motors provide the necessary power and functionality to enhance our daily lives.

induction motor

What is an AC motor, and how does it differ from a DC motor?

An AC motor, also known as an alternating current motor, is a type of electric motor that operates on alternating current. It converts electrical energy into mechanical energy through the interaction of magnetic fields. AC motors are widely used in various applications, ranging from household appliances to industrial machinery. Here’s a detailed explanation of what an AC motor is and how it differs from a DC motor:

AC Motor:

An AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. These windings are typically made of copper wire and are arranged in specific configurations to create a rotating magnetic field when energized by an alternating current. The rotor, on the other hand, is the rotating part of the motor and is typically made of laminated steel cores with conducting bars or coils. The rotor windings are connected to a shaft, and their interaction with the rotating magnetic field produced by the stator causes the rotor to rotate.

The operation of an AC motor is based on the principles of electromagnetic induction. When the stator windings are energized with an AC power supply, the changing magnetic field induces a voltage in the rotor windings, which in turn creates a magnetic field. The interaction between the rotating magnetic field of the stator and the magnetic field of the rotor produces a torque, causing the rotor to rotate. The speed of rotation depends on the frequency of the AC power supply and the number of poles in the motor.

DC Motor:

A DC motor, also known as a direct current motor, operates on direct current. Unlike an AC motor, which relies on the interaction of magnetic fields to generate torque, a DC motor uses the principle of commutation to produce rotational motion. A DC motor consists of a stator and a rotor, similar to an AC motor. The stator contains the stator windings, while the rotor consists of a rotating armature with coils or permanent magnets.

In a DC motor, when a direct current is applied to the stator windings, a magnetic field is created. The rotor, either through the use of brushes and a commutator or electronic commutation, aligns itself with the magnetic field and begins to rotate. The direction of the current in the rotor windings is continuously reversed to ensure continuous rotation. The speed of a DC motor can be controlled by adjusting the voltage applied to the motor or by using electronic speed control methods.

Differences:

The main differences between AC motors and DC motors are as follows:

  • Power Source: AC motors operate on alternating current, which is the standard power supply in most residential and commercial buildings. DC motors, on the other hand, require direct current and typically require a power supply that converts AC to DC.
  • Construction: AC motors and DC motors have similar construction with stators and rotors, but the design and arrangement of the windings differ. AC motors generally have three-phase windings, while DC motors can have either armature windings or permanent magnets.
  • Speed Control: AC motors typically operate at fixed speeds determined by the frequency of the power supply and the number of poles. DC motors, on the other hand, offer more flexibility in speed control and can be easily adjusted over a wide range of speeds.
  • Efficiency: AC motors are generally more efficient than DC motors. AC motors can achieve higher power densities and are often more suitable for high-power applications. DC motors, however, offer better speed control and are commonly used in applications that require precise speed regulation.
  • Applications: AC motors are widely used in applications such as industrial machinery, HVAC systems, pumps, and compressors. DC motors find applications in robotics, electric vehicles, computer disk drives, and small appliances.

In conclusion, AC motors and DC motors differ in their power source, construction, speed control, efficiency, and applications. AC motors rely on the interaction of magnetic fields and operate on alternating current, while DC motors use commutation and operate on direct current. Each type of motor has its advantages and is suited for different applications based on factors such as power requirements, speed control needs, and efficiency considerations.

China OEM 100W 1/8HP Ratio 100K Three Phase 380V Small AC Electric Gearbox Reducer Induction Reduction Motor   with high quality China OEM 100W 1/8HP Ratio 100K Three Phase 380V Small AC Electric Gearbox Reducer Induction Reduction Motor   with high quality
editor by CX 2024-05-14

China OEM Helical Speed Reducer 220V 380V 50Hz 60Hz AC Electric Motor Reductor Speed Reducer/High Torque Gear Motor vacuum pump brakes

Product Description

Helical Speed Reducer 220v 380v 50hz 60hz Ac Electric Motor reductor Speed Reducer/high torque gear motor

< ABOUT TILI

 

Technical data

 

Product Name Helical Speed Reducer 220v 380v 50hz 60hz Ac Electric Motor reductor Speed Reducer/high torque gear motor
Power 0.12KW~160KW    
Torque 1.4N · m ~ 36600N · m   
Output speed 0.06 ~ 1090r/min
Gear material 20CrMnTi alloy steel
Gear Processing   Grinding finish by HOFLER Grinding Machines
Noise Test Below 65dB
Brand of bearings C&U bearing, ZWZ,LYC, HRB, CHINAMFG ,etc
Brand of oil seal NAK or other brand
Temp. rise (MAX) 40ºC  
Temp. rise (Oil)(MAX 50ºC  
Vibration ≤20µm
Housing hardness HBS190-240
Surface hardness of gears HRC58°~62 °
Gear core hardness HRC33~40
Machining precision of gears 5 Grade
Lubricating oil GB L-CKC220-460, Shell Omala220-460
Heat treatment Carburizing, Quenching etc
Efficiency 95%~96% (depends on the transmission stage)
Bearing output mode parallel output 
Installation type and output mode Bottom seated type  flange type installation, solid,hollow shaft output.
Input mode Direct motor, shaft input and connecting flange input
Input Method Flange input(AM), shaft input(AD), inline AC motor input, or AQA servo motor

 

Installation Instructions

 

Company Profile

< WORKSHOP

< QUALITY CONTROL

 

Certifications

Packaging & Shipping

FAQ

 

Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of reducer.

Q 2:Can you do OEM?
A:Yes, we can. We can do OEM for all the customers .if you want to order NON-STANDERD speed reducers,pls provide Drafts, Dimensions, Pictures and Samples if possible.

Q 3: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 4: Do you have inspection procedures for reducer?
A:100% self-inspection before packing.

Q 5: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

Q 6:How to choose a gearbox? What if I don’t know which gear reducer I need?
A:You can refer to our catalogue to choose the gearbox or we can help to choose when you provide,the technical information of required output torque, output speed and motor parameter etc. Don’t worry, Send as much information as you can, our team will help you find the right 1 you are looking for.

Q 7: What information shall we give before placing a purchase order?
A:a) Type of the gearbox, Size , Transmission Ratio, input and output type, input flange, mounting position, motor information and shaft deflection etc. b)Housing color.c) Purchase quantity. d) Other special requirements

Q 8:What is the payment term?
A:You can pay via T/T(30% in advance as deposit before production +70% before delivery

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Agricultural Machinery, Industrial Automation Equipment, Chemical Industry
Function: Distribution Power, Change Drive Torque, Speed Changing, Speed Reduction
Layout: Coaxial
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

induction motor

How do variable frequency drives (VFDs) impact the performance of AC motors?

Variable frequency drives (VFDs) have a significant impact on the performance of AC motors. A VFD, also known as a variable speed drive or adjustable frequency drive, is an electronic device that controls the speed and torque of an AC motor by varying the frequency and voltage of the power supplied to the motor. Let’s explore how VFDs impact AC motor performance:

  • Speed Control: One of the primary benefits of using VFDs is the ability to control the speed of AC motors. By adjusting the frequency and voltage supplied to the motor, VFDs enable precise speed control over a wide range. This speed control capability allows for more efficient operation of the motor, as it can be operated at the optimal speed for the specific application. It also enables variable speed operation, where the motor speed can be adjusted based on the load requirements, resulting in energy savings and enhanced process control.
  • Energy Efficiency: VFDs contribute to improved energy efficiency of AC motors. By controlling the motor speed based on the load demand, VFDs eliminate the energy wastage that occurs when motors run at full speed even when the load is light. The ability to match the motor speed to the required load reduces energy consumption and results in significant energy savings. In applications where the load varies widely, such as HVAC systems, pumps, and fans, VFDs can provide substantial energy efficiency improvements.
  • Soft Start and Stop: VFDs offer soft start and stop capabilities for AC motors. Instead of abruptly starting or stopping the motor, which can cause mechanical stress and electrical disturbances, VFDs gradually ramp up or down the motor speed. This soft start and stop feature reduces mechanical wear and tear, extends the motor’s lifespan, and minimizes voltage dips or spikes in the electrical system. It also eliminates the need for additional mechanical devices, such as motor starters or brakes, improving overall system reliability and performance.
  • Precision Control and Process Optimization: VFDs enable precise control over AC motor performance, allowing for optimized process control in various applications. The ability to adjust motor speed and torque with high accuracy enables fine-tuning of system parameters, such as flow rates, pressure, or temperature. This precision control enhances overall system performance, improves product quality, and can result in energy savings by eliminating inefficiencies or overcompensation.
  • Motor Protection and Diagnostic Capabilities: VFDs provide advanced motor protection features and diagnostic capabilities. They can monitor motor operating conditions, such as temperature, current, and voltage, and detect abnormalities or faults in real-time. VFDs can then respond by adjusting motor parameters, issuing alerts, or triggering shutdowns to protect the motor from damage. These protection and diagnostic features help prevent motor failures, reduce downtime, and enable predictive maintenance, resulting in improved motor reliability and performance.
  • Harmonics and Power Quality: VFDs can introduce harmonics into the electrical system due to the switching nature of their operation. Harmonics are undesirable voltage and current distortions that can impact power quality and cause issues in the electrical distribution network. However, modern VFDs often include built-in harmonic mitigation measures, such as line reactors or harmonic filters, to minimize harmonics and ensure compliance with power quality standards.

In summary, VFDs have a profound impact on the performance of AC motors. They enable speed control, enhance energy efficiency, provide soft start and stop capabilities, enable precision control and process optimization, offer motor protection and diagnostic features, and address power quality considerations. The use of VFDs in AC motor applications can lead to improved system performance, energy savings, increased reliability, and enhanced control over various industrial and commercial processes.

induction motor

Can AC motors be used in renewable energy systems, such as wind turbines?

Yes, AC motors can be used in renewable energy systems, including wind turbines. In fact, AC motors are commonly employed in various applications within wind turbines due to their numerous advantages. Here’s a detailed explanation:

1. Generator: In a wind turbine system, the AC motor often functions as a generator. As the wind turbine blades rotate, they drive the rotor of the generator, which converts the mechanical energy of the wind into electrical energy. AC generators are commonly used in wind turbines due to their efficiency, reliability, and compatibility with power grid systems.

2. Variable Speed Control: AC motors offer the advantage of variable speed control, which is crucial for wind turbines. The wind speed is variable, and in order to maximize energy capture, the rotor speed needs to be adjusted accordingly. AC motors, when used as generators, can adjust their rotational speed with the changing wind conditions by modifying the frequency and voltage of the output electrical signal.

3. Efficiency: AC motors are known for their high efficiency, which is an important factor in renewable energy systems. Wind turbines aim to convert as much of the wind energy into electrical energy as possible. AC motors, especially those designed for high efficiency, can help maximize the overall energy conversion efficiency of the wind turbine system.

4. Grid Integration: AC motors are well-suited for grid integration in renewable energy systems. The electrical output from the AC generator can be easily synchronized with the grid frequency and voltage, allowing for seamless integration of the wind turbine system with the existing power grid infrastructure. This facilitates the efficient distribution of the generated electricity to consumers.

5. Control and Monitoring: AC motors offer advanced control and monitoring capabilities, which are essential for wind turbine systems. The electrical parameters, such as voltage, frequency, and power output, can be easily monitored and controlled in AC motor-based generators. This allows for real-time monitoring of the wind turbine performance, fault detection, and optimization of the power generation process.

6. Availability and Standardization: AC motors are widely available in various sizes and power ratings, making them readily accessible for wind turbine applications. They are also well-standardized, ensuring compatibility with other system components and facilitating maintenance, repair, and replacement activities.

It’s worth noting that while AC motors are commonly used in wind turbines, there are other types of generators and motor technologies utilized in specific wind turbine designs, such as permanent magnet synchronous generators (PMSGs) or doubly-fed induction generators (DFIGs). These alternatives offer their own advantages and may be preferred in certain wind turbine configurations.

In summary, AC motors can indeed be used in renewable energy systems, including wind turbines. Their efficiency, variable speed control, grid integration capabilities, and advanced control features make them a suitable choice for converting wind energy into electrical energy in a reliable and efficient manner.

induction motor

What are the key advantages of using AC motors in industrial applications?

AC motors offer several key advantages that make them highly suitable for industrial applications. Here are some of the main advantages:

  1. Simple and Robust Design: AC motors, particularly induction motors, have a simple and robust design, making them reliable and easy to maintain. They consist of fewer moving parts compared to other types of motors, which reduces the likelihood of mechanical failure and the need for frequent maintenance.
  2. Wide Range of Power Ratings: AC motors are available in a wide range of power ratings, from small fractional horsepower motors to large industrial motors with several megawatts of power. This versatility allows for their application in various industrial processes and machinery, catering to different power requirements.
  3. High Efficiency: AC motors, especially modern designs, offer high levels of efficiency. They convert electrical energy into mechanical energy with minimal energy loss, resulting in cost savings and reduced environmental impact. High efficiency also means less heat generation, contributing to the longevity and reliability of the motor.
  4. Cost-Effectiveness: AC motors are generally cost-effective compared to other types of motors. Their simple construction and widespread use contribute to economies of scale, making them more affordable for industrial applications. Additionally, AC motors often have lower installation and maintenance costs due to their robust design and ease of operation.
  5. Flexible Speed Control: AC motors, particularly induction motors, offer various methods for speed control, allowing for precise adjustment of motor speed to meet specific industrial requirements. Speed control mechanisms such as variable frequency drives (VFDs) enable enhanced process control, energy savings, and improved productivity.
  6. Compatibility with AC Power Grid: AC motors are compatible with the standard AC power grid, which is widely available in industrial settings. This compatibility simplifies the motor installation process and eliminates the need for additional power conversion equipment, reducing complexity and cost.
  7. Adaptability to Various Environments: AC motors are designed to operate reliably in a wide range of environments. They can withstand variations in temperature, humidity, and dust levels commonly encountered in industrial settings. Additionally, AC motors can be equipped with protective enclosures to provide additional resistance to harsh conditions.

These advantages make AC motors a popular choice for industrial applications across various industries. Their simplicity, reliability, cost-effectiveness, energy efficiency, and speed control capabilities contribute to improved productivity, reduced operational costs, and enhanced process control in industrial settings.

China OEM Helical Speed Reducer 220V 380V 50Hz 60Hz AC Electric Motor Reductor Speed Reducer/High Torque Gear Motor   vacuum pump brakesChina OEM Helical Speed Reducer 220V 380V 50Hz 60Hz AC Electric Motor Reductor Speed Reducer/High Torque Gear Motor   vacuum pump brakes
editor by CX 2024-05-07

China Custom High Effciency and High Voltage AC Asynchronous Squirrel Cage Induction Electric Motor for Water Pump, Air Compreesor, Gear Reducer Fan Blower (Y2/YE3 Series) vacuum pump engine

Product Description

Why choose us ?
ELECTRIC MOTOR FEATURES  

Electric motor frame from 56 – 355, output range from 0.17HP to 430HP

Motor mounting type B3 (IM 1001), B35 (IM 2001), B5 (IM 3001), B14 (IM 3601), B34 (IM 2101)

Optional voltage 110V, 120V, 220V, 240V, 220/380V, 230V/400V, 380V/660V, 50HZ or 60HZ

Protection type IP44, IP54, IP55 on request 

Multiple mounting arrangement for optional           
Aluminum frame, end shields and base    

Strong cast iron frame
High strength cable
Shaft key and protector supplied        
Superior paint finish         
45# steel shaft and stainless steel shaft is optional
Electric motor continuous duty S1,S4
Electric motor have vacuum impregnation for insulation
Electric motor is class F insulation and class H insulation is optional
Electric motor has been make according to ISO9001, CE, UL, CCC, GS request

All of our products are make according to GOST, RoHS and IEC standard.

High performance and IE1, IE2, IE3 efficiency  

 

OUR ELECRIC MOTOR FOR CUSTOMER BENEFITS

Electricity saving and quiet operation
Electric motor can withstand water, dust and vermin
Electric motor very easy installation
Electric motor dependable Corrosion resistant and long life to work
Reliability performance and very competitive price.
 

HOW TO MAKE MOTOR ON CHINAMFG COMPANY

1. Silicon steel DR510, 800, 600, 360 standard use stamping of lamination stator and rotor die-casting

2. 100% copper winding and inserting stator (manual and semi-automatically)

3. Stator Vacuum impregnation and drying

4. CNC machining motor shaft, frame, end shields, etc

5. Professional workman inspecting spare parts every processing

6. Electric motor assembly product line

7. Electric motor will 100% test before painting.

8. Electric motor spray-paint on motor painting product line

9. Electric motor will 100% check again before packing.

An electric motor from material to finish motor, must pass 15 time check, and 100% testing, output power, voltage, electric current, non-load, 50% load, 75% load, 100% load and check the nameplate, packing. Finally shipping to our customer.

Att:Our company price was based on high height cold rolled steel stator to promise the efficiency ,if you need to cheaper ,you can choose short height stator or hot cold rolled steel stator ,thankyou

Product details 

YE3 PARAMETERS

SYNCHRONOUS OUTPUT SPEED=3000RPM     FREQUENCY=50HZ  VOLTAGE=380V 

MODEL

POWER 

(KW)

CURRENT 

(A)

SPEED  

(RPM)

EFF

POWER 

FACTOR

RATED 

TORQUE

TST IST TMAX

NOISE 

dB(A)

YE3-63M1-2 0.18kw 0.53 2720 63.9 0.8 0.63 2.2 5.5 2.2 61
YE3-63M2-2 0.25kw 0.7 2720 97.1 0.81 0.88 2.2 5.5 2.2 61
YE3-71M1-2 0.37kw 1 2740 69 0.81 1.29 2.2 6.1 2.2 62
YE3-71M2-2 0.55kw 1.4 2740 72.3 0.82 1.92 2.2 6.1 2.2 62
YE3-801-2 0.75kw 1.8 2830 80.7 0.83 2.5 2.2 7 2.3 62
YE3-802-2 1.1kw 2.5 2840 82.7 0.83 3.65 2.2 7.3 2.3 62
YE3-90S-2 1.5kw 3.4 2840 84.2 0.84 4.97 2.2 7.6 2.3 67
YE3-90L-2 2.2kw 4.8 2840 85.9 0.85 7.3 2.2 7.6 2.3 67
YE3-100L-2 3kw 6.3 2870 87.1 0.87 9.95 2.2 7.8 2.3 74
YE3-112M-2 4kw 8.2 2890 88.1 0.88 13.1 2.2 8.3 2.3 77
YE3-132S1-2 5.5kw 11.1 2900 89.2 0.88 17.9 2 8.3 2.3 79
YE3-132S2-2 7.5kw 15 2900 90.1 0.89 24.4 2 7.9 2.3 79
YE3-160M1-2 11kw 21.3 2930 912 0.89 35.6 2 8.1 2.3 81
YE3-160M2-2 15kw 28.7 2930 91.9 0.89 48.6 2 8.1 2.3 81
YE3-160L-2 18.5kw 34.7 2930 92.4 0.89 60 2 8.2 2.3 81
YE3–180M-2 22kw 41.2 2940 92.7 0.89 71.2 2 8.2 2.3 83
YE3-200-L1-2 30kw 55.3 2950 93.3 0.89 96.6 2 7.6 2.3 84
YE3-200L2-2 37kw 67.9 2950 93.7 0.89 119 2 7.6 2.3 84
YE3-225M-2 45kw 82.1 2970 94 0.89 145 2 7.7 2.3 86
YE3-250M-2 55kw 100.1 2970 94.3 0.89 177 2 7.7 2.3 89
YE3-280S-2 75kw 134 2970 94.7 0.89 241 1.8 7.1 2.3 91
YE3-280M-2 90kw 160.2 2970 95 0.89 289 1.8 7.1 2.3 91

SYNCHRONOUS OUTPUT SPEED=1500RPM     FREQUENCY=50HZ  VOLTAGE=380V

MODEL

POWER 

(KW)

CURRENT 

(A)

SPEED 

(RPM)

EFF

POWER 

FACTOR

RATED 

TORQUE

TST IST TMAX

NOISE 

dB(A)

YE3-63M1-4 0.12kw 0.45 1310rpm 55.8 0.72 0.87 2.1 4.4 2.2 52
YE3-63M2-4 0.18kw 0.64 1310rpm 58.6 0.73 1.31 2.1 4.4 2.2 52
YE3-71M1-4 0.25kw 0.81 1330rpm 63.6 0.74 1.8 2.1 5.2 2.2 55
YE3-71M2-4 0.37kw 1.1 1330rpm 65.3 0.75 2.66 2.1 5.2 2.2 55
YE3-801-4 0.55kw 1.4 1390rpm 80.6 0.75 3.67 2.3 6.5 2.3 56
YE3-8002-4 0.75kw 1.9 1390rpm 82.5 0.75 5.01 2.3 6.6 2.3 56
YE3-90S-4 1.1kw 2.7 1400rpm 84.1 0.76 7.35 2.3 6.8 2.3 59
YE3-90L-4 1.5kw 3.6 1400rpm 85.3 0.77 10 2.3 7 2.3 59
YE3-100L1-4 2.2kw 4.8 1430rpm 86.7 0.81 14.6 2.3 7.6 2.3 64
YE3-100L2-4 3kw 6.6 1430rpm 87.7 0.82 19.9 2.3 7.6 2.3 64
YE3-112M-4 4kw 8.6 1440rpm 88.6 0.82 26.3 2.2 7.8 2.3 65
YE3-132S-4 5.5kw 11.6 1440rpm 89.6 0.83 35.9 2 7.9 2.3 71
YE3-132M-4 7.5kw 14.6 1440rpm 90.4 0.84 48.9 2 7.5 2.3 71
YE3-160M-4 11kw 22.6 1460rpm 91.4 0.85 71.5 2 7.7 2.3 73
YE3-160L-4 15kw 29.3 1460rpm 92.1 0.86 97.4 2 7.8 2.3 73
YE3-180M-4 18.5kw 35.45 1470rpm 92.6 0.86 120 2 7.8 2.3 76
YE3-180L-4 22kw 42.35 1470rpm 93 0.86 143 2 7.8 2.3 76
YE3-200L-4 30kw 57.6 1475rpm 93.6 0.86 194 2 7.3 2.3 76
YE3-225S-4 37kw 69.8 1480rpm 93.9 0.86 239 2 7.4 2.3 78
YE3-225M-4 45kw 84.5 1480rpm 94.2 0.86 290 2 7.4 2.3 78
YE3-250M-4 55kw 103.1 1485rpm 94.6 0.86 354 2 7.4 2.3 79
YE3-280S-4 75kw 139.7 1490rpm 95 0.88 481 2 6.7 2.3 80
YE3-280M-4 90kw 166.9 1485rpm 95.2 0.88 577 2 6.9 2.3 80

SYNCHRONOUS OUTPUT SPEED=1000RPM     FREQUENCY=50HZ  VOLTAGE=380V

MODEL

POWER 

(KW)

CURRENT 

(A)

SPEED 

(RPM)

EFF

POWER 

FACTOR

RATED 

TORQUE

TST IST TMAX

NOISE 

dB(A)

YE3-71M1-6 0.18kw 0.76 850rpm 54.6 0.66 2.02 1.9 4 2 52
YE3-71M2-6 0.25kw 0.97 850rpm 57.4 0.68 2.81 1.9 4 2 52
YE3-80M1-6 0.37kw 1.2 890rpm 68 0.7 3.88 1.9 5.5 2.1 54
YE3-80M2-6 0.55kw 1.7 890rpm 72 0.71 5.68 1.9 5.8 2.1 54
YE3-90S-6 0.75kw 2.2 910rpm 78.9 0.71 7.58 2 6 2.1 57
YE3-90L-6 1.1kw 3.8 910rpm 81 0.73 11.1 2 6 2.1 57
YE3-100L-6 1.5kw 3.8 940rpm 82.5 0.73 15.1 2 6.5 2.1 61
YE3-112M-6 2.2kw 5.4 940rpm 84.3 0.74 21.8 2 6.6 2.1 65
YE3-132S-6 3kw 7.4 960rpm 85.6 0.74 29.4 1.9 6.8 2.1 69
YE3-132M1-6 4kw 9.6 960rpm 86.8 0.74 39.2 1.9 6.8 2.1 69
YE3-132M2-6 5.5kw 12.9 960rpm 88 0.75 53.9 2 7 2.1 69
YE3-160M-6 7.5kw 17 970rpm 89.1 0.79 73.1 2.1 7 2.1 70
YE3-160L-6 11kw 24.2 970rpm 90.3 0.8 107 2.1 7.2 2.1 70
YE3-180L-6 15kw 31.6 970rpm 91.2 0.81 146 2 7.3 2.1 73
YE3-200L1-6 18.5kw 38.1 970rpm 91.7 0.81 179 2.1 7.3 2.1 73
YE3-200L2-6 22kw 44.5 970rpm 92.2 0.81 213 2.1 7.4 2.1 73
YE3-225M-6 30kw 58.6 980rpm 92.9 0.83 291 2 6.9 2.1 74
YE3-250M-6 37kw 71 980rpm 93.3 0.84 359 2.1 7.1 2.1 76
YE3-280S-6 45kw 85.9 980rpm 93.7 0.85 434 2.1 7.3 2.1 78
YE3-280M-6 55kw 104.7 980rpm 94.1 0.86 531 2.1 7.3 2.1 78

 SYNCHRONOUS OUTPUT SPEED=750RPM      FREQUENCY=50HZ  VOLTAGE=380V

MODEL

POWER 

(KW)

CURRENT 

(A)

SPEED 

(RPM)

EFF

POWER 

FACTOR

RATED 

TORQUE

TST IST TMAX

NOISE 

dB(A)

YE3-801-8 0.18kw 0.81 630rpm 56 0.61 2.5 1.8 3.3 1.9 52
YE3-802-8 0.25kw 1.1 640rpm 59 0.61 3.4 1.8 3.3 1.9 52
YE3-90S-8 0.37kw 1.4 660rpm 66 0.61 5.1 1.8 4 1.9 56
YE3-90L-8 0.55kw 2.1 660rpm 70 0.61 7.6 1.8 4 2 56
YE3-100L1-8 0.75kw 2.4 690rpm 73.5 0.67 10.2 1.8 4 2 59
YE3-100L2-8 1.1kw 3.4 690rpm 76.5 0.69 14.9 1.8 5 2 59
YE3-112M-8 1.5kw 4.4 680rpm 77.5 0.7 20 1.8 5 2 61
YE3-132S-8 2.2kw 6 710rpm 80 0.71 28.8 1.8 6 2 64
YE3-132M-8 3kw 7.9 710rpm 82.5 0.73 39.2 1.8 6 2 64
YE3-160M1-8 4kw 10.2 720rpm 85 0.73 52.7 1.9 6 2 68
YE3-160M2-8 5.5kw 13.6 720rpm 86 0.74 82.4 1.9 6 2 68
YE3-160L-8 7.5kw 17.8 720rpm 87.5 0.75 98.1 1.9 6 2 68
YE3-180L-8 11kw 25.2 730rpm 89 0.75 145 2 6.5 2 70
YE3-200L-8 15kw 34 730rpm 90.4 0.76 196 2 6.6 2 73
YE3-225S-8 18.5kw 40.5 740rpm 91.2 0.76 240 1.9 6.6 2 73
YE3-225M-8 22kw 47.3 740rpm 91.5 0.78 286 1.9 6.6 2 73
YE3-250M-8 30kw 63.4 740rpm 92.2 0.79 390 1.9 6.5 2 75
YE3-280S-8 37kw 76.8 740rpm 93 0.79 478 1.9 6.6 2

FAQ 

Q1: What about the shipping methods?

1): For urgent order and light weight, you can choose the following express: UPS, FedEx, TNT, DHL, EMS.

 For heavy weight, you can choose to deliver the goods by air or by sea to save cost.
 

Q2: What about the payment methods?

A2: We accept T/T, L/C for big amount, and for small amount, you can pay us by PayPal, Western Union etc.
 

Q3: How much does it cost to ship to my country?

A3: It depends on seasons. Fee is different in different seasons. You can consult us at all times.
 

Q4: What’s your delivery time?

A4: Usually we produce within 25-30days after the payment came.
 

Q5: Can I print our logo/code/series number on your motor?

A5: Yes, of course.
 

Q6: Can I order some sample for our testing?

A6: Yes, but it needs some expenses.
 

Q7: Can you customize my product in special requirement?

A7: Yes, we can offer OEM.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Closed Type
Number of Poles: 2.4.6.8.10.12
Customization:
Available

|

induction motor

Are there environmental considerations associated with the use of AC motors?

Yes, there are several environmental considerations associated with the use of AC motors. These considerations are primarily related to energy consumption, greenhouse gas emissions, and the disposal of motors at the end of their life cycle. Let’s explore these environmental considerations in detail:

  • Energy Efficiency: AC motors can have varying levels of energy efficiency, which directly impacts their environmental impact. Motors with higher efficiency convert a larger percentage of electrical energy into useful mechanical work, resulting in reduced energy consumption. By selecting and using high-efficiency AC motors, energy usage can be minimized, leading to lower greenhouse gas emissions and reduced reliance on fossil fuels for electricity generation.
  • Greenhouse Gas Emissions: The electricity consumed by AC motors is often produced by power plants that burn fossil fuels, such as coal, natural gas, or oil. The generation of electricity from these fossil fuels releases greenhouse gases, contributing to climate change. By employing energy-efficient motors and optimizing motor systems, businesses and individuals can reduce their electricity demand, leading to lower greenhouse gas emissions and a smaller carbon footprint.
  • Motor Disposal and Recycling: AC motors contain various materials, including metals, plastics, and electrical components. At the end of their life cycle, proper disposal or recycling is important to minimize their environmental impact. Some components, such as copper windings and steel casings, can be recycled, reducing the need for new raw materials and energy-intensive manufacturing processes. It is crucial to follow local regulations and guidelines for the disposal and recycling of motors to prevent environmental pollution and promote resource conservation.
  • Manufacturing and Production: The manufacturing and production processes associated with AC motors can have environmental implications. The extraction and processing of raw materials, such as metals and plastics, can result in habitat destruction, energy consumption, and greenhouse gas emissions. Additionally, the manufacturing processes themselves can generate waste and pollutants. Motor manufacturers can mitigate these environmental impacts by adopting sustainable practices, using recycled materials, reducing waste generation, and implementing energy-efficient production methods.
  • Life Cycle Assessment: Conducting a life cycle assessment (LCA) of AC motors can provide a holistic view of their environmental impact. An LCA considers the environmental aspects associated with the entire life cycle of the motor, including raw material extraction, manufacturing, transportation, use, and end-of-life disposal or recycling. By analyzing the different stages of the motor’s life cycle, stakeholders can identify opportunities for improvement, such as optimizing energy efficiency, reducing emissions, and implementing sustainable practices.

To address these environmental considerations, governments, organizations, and industry standards bodies have developed regulations and guidelines to promote energy efficiency and reduce the environmental impact of AC motors. These include efficiency standards, labeling programs, and incentives for the use of high-efficiency motors. Additionally, initiatives promoting motor system optimization, such as proper motor sizing, maintenance, and control, can further enhance energy efficiency and minimize environmental impact.

In summary, the environmental considerations associated with the use of AC motors include energy efficiency, greenhouse gas emissions, motor disposal and recycling, manufacturing processes, and life cycle assessment. By prioritizing energy efficiency, proper disposal, recycling, and sustainable manufacturing practices, the environmental impact of AC motors can be minimized, contributing to a more sustainable and environmentally conscious approach to motor usage.

induction motor

What are the common signs of AC motor failure, and how can they be addressed?

AC motor failure can lead to disruptions in various industrial and commercial applications. Recognizing the common signs of motor failure is crucial for timely intervention and preventing further damage. Here are some typical signs of AC motor failure and potential ways to address them:

  • Excessive Heat: Excessive heat is a common indicator of motor failure. If a motor feels excessively hot to the touch or emits a burning smell, it could signify issues such as overloaded windings, poor ventilation, or bearing problems. To address this, first, ensure that the motor is properly sized for the application. Check for obstructions around the motor that may be impeding airflow and causing overheating. Clean or replace dirty or clogged ventilation systems. If the issue persists, consult a qualified technician to inspect the motor windings and bearings and make any necessary repairs or replacements.
  • Abnormal Noise or Vibration: Unusual noises or vibrations coming from an AC motor can indicate various problems. Excessive noise may be caused by loose or damaged components, misaligned shafts, or worn bearings. Excessive vibration can result from imbalanced rotors, misalignment, or worn-out motor parts. Addressing these issues involves inspecting and adjusting motor components, ensuring proper alignment, and replacing damaged or worn-out parts. Regular maintenance, including lubrication of bearings, can help prevent excessive noise and vibration and extend the motor’s lifespan.
  • Intermittent Operation: Intermittent motor operation, where the motor starts and stops unexpectedly or fails to start consistently, can be a sign of motor failure. This can be caused by issues such as faulty wiring connections, damaged or worn motor brushes, or problems with the motor’s control circuitry. Check for loose or damaged wiring connections and make any necessary repairs. Inspect and replace worn or damaged motor brushes. If the motor still exhibits intermittent operation, it may require professional troubleshooting and repair by a qualified technician.
  • Overheating or Tripping of Circuit Breakers: If an AC motor consistently causes circuit breakers to trip or if it repeatedly overheats, it indicates a problem that needs attention. Possible causes include high starting currents, excessive loads, or insulation breakdown. Verify that the motor is not overloaded and that the load is within the motor’s rated capacity. Check the motor’s insulation resistance to ensure it is within acceptable limits. If these measures do not resolve the issue, consult a professional to assess the motor and its electrical connections for any faults or insulation breakdown that may require repair or replacement.
  • Decreased Performance or Efficiency: A decline in motor performance or efficiency can be an indication of impending failure. This may manifest as reduced speed, decreased torque, increased energy consumption, or inadequate power output. Factors contributing to decreased performance can include worn bearings, damaged windings, or deteriorated insulation. Regular maintenance, including lubrication and cleaning, can help prevent these issues. If performance continues to decline, consult a qualified technician to inspect the motor and perform any necessary repairs or replacements.
  • Inoperative Motor: If an AC motor fails to operate entirely, there may be an issue with the power supply, control circuitry, or internal motor components. Check the power supply and connections for any faults or interruptions. Inspect control circuitry, such as motor starters or contactors, for any damage or malfunction. If no external faults are found, it may be necessary to dismantle the motor and inspect internal components, such as windings or brushes, for any faults or failures that require repair or replacement.

It’s important to note that motor failure causes can vary depending on factors such as motor type, operating conditions, and maintenance practices. Regular motor maintenance, including inspections, lubrication, and cleaning, is essential for early detection of potential failure signs and for addressing issues promptly. When in doubt, it is advisable to consult a qualified electrician, motor technician, or manufacturer’s guidelines for appropriate troubleshooting and repair procedures specific to the motor model and application.

induction motor

How does the speed control mechanism work in AC motors?

The speed control mechanism in AC motors varies depending on the type of motor. Here, we will discuss the speed control methods used in two common types of AC motors: induction motors and synchronous motors.

Speed Control in Induction Motors:

Induction motors are typically designed to operate at a constant speed determined by the frequency of the AC power supply and the number of motor poles. However, there are several methods for controlling the speed of induction motors:

  1. Varying the Frequency: By varying the frequency of the AC power supply, the speed of an induction motor can be adjusted. This method is known as variable frequency drive (VFD) control. VFDs convert the incoming AC power supply into a variable frequency and voltage output, allowing precise control of motor speed. This method is commonly used in industrial applications where speed control is crucial, such as conveyors, pumps, and fans.
  2. Changing the Number of Stator Poles: The speed of an induction motor is inversely proportional to the number of stator poles. By changing the connections of the stator windings or using a motor with a different pole configuration, the speed can be adjusted. However, this method is less commonly used and is typically employed in specialized applications.
  3. Adding External Resistance: In some cases, external resistance can be added to the rotor circuit of an induction motor to control its speed. This method, known as rotor resistance control, involves inserting resistors in series with the rotor windings. By varying the resistance, the rotor current and torque can be adjusted, resulting in speed control. However, this method is less efficient and is mainly used in specific applications where precise control is not required.

Speed Control in Synchronous Motors:

Synchronous motors offer more precise speed control compared to induction motors due to their inherent synchronous operation. The following methods are commonly used for speed control in synchronous motors:

  1. Adjusting the AC Power Frequency: Similar to induction motors, changing the frequency of the AC power supply can control the speed of synchronous motors. By adjusting the power frequency, the synchronous speed of the motor can be altered. This method is often used in applications where precise speed control is required, such as industrial machinery and processes.
  2. Using a Variable Frequency Drive: Variable frequency drives (VFDs) can also be used to control the speed of synchronous motors. By converting the incoming AC power supply into a variable frequency and voltage output, VFDs can adjust the motor speed with high accuracy and efficiency.
  3. DC Field Control: In some synchronous motors, the rotor field is supplied by a direct current (DC) source, allowing for precise control over the motor’s speed. By adjusting the DC field current, the magnetic field strength and speed of the motor can be controlled. This method is commonly used in applications that require fine-tuned speed control, such as industrial processes and high-performance machinery.

These methods provide different ways to control the speed of AC motors, allowing for flexibility and adaptability in various applications. The choice of speed control mechanism depends on factors such as the motor type, desired speed range, accuracy requirements, efficiency considerations, and cost constraints.

China Custom High Effciency and High Voltage AC Asynchronous Squirrel Cage Induction Electric Motor for Water Pump, Air Compreesor, Gear Reducer Fan Blower (Y2/YE3 Series)   vacuum pump engine	China Custom High Effciency and High Voltage AC Asynchronous Squirrel Cage Induction Electric Motor for Water Pump, Air Compreesor, Gear Reducer Fan Blower (Y2/YE3 Series)   vacuum pump engine
editor by CX 2024-03-30

China supplier CE 0.12kw-315kw Y2 Series Three Phase Asynchronous Electric Motor AC Motor Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower vacuum pump adapter

Product Description

We,GOGOGO Mechanical&Electrical Co.,Ltd specialize in high quality energy-efficient electric motors. The combination of the best available materials, high quality sheet metal and the right amount of copper in the rotor/stator makes GOGOGO’s electric motors highly energy-efficient.

We design our electric motors to fit and match our customer’s requirements at our production site. The electric motors can be supplemented with a range of options and accessories or modified with a special design to endure any environment.
 

Electric motors account for a large part of the electricity used. If we look at the world, electric motors account for about 65 percent of the electricity used in industry. To reduce this use of electricity, there are legal requirements regarding the efficiency of electric motors manufactured in the EU, or exported into the EU.

Three-phase, single-speed asynchronous motors are covered by the requirements today. Asynchronous motors are the most common type of motor and account for 90 percent of the electricity consumption of all electric motors in the power range 0.75 – 375 kW.

According to that standard, the energy efficiency classes have the designations IE1, IE2, IE3 and IE4, where IE4 has the highest efficiency.

 

Revision of the standard

A revision of the standard was decided by the Ecodesign Committee in 2019. The revision was published on October 1, 2019. The following will apply:

For electric motors

From July 1, 2571

2-, 4-, 6- and 8-pole motors from 0.75 – 1000 kW (previously up to 375kW) are included in efficiency class IE3.

Motors within the range 0.12 – 0.75 kW must meet efficiency class IE2.

The previous possibility to replace IE3 motors with an IE2 motor with frequency drive disappears.

From July 1, 2571

For 2-, 4-, 6- and 8-pole motors from 0.12 – 1000 kW, the efficiency class IE2 now also applies to Ex eb certified motors with high safety.

Single phase motors with greater power than 0.12 kW are covered by the corresponding IE2 class.

The higher efficiency class IE4 applies to 2, 4 and 6-pole motors between 75 – 200 kW.

For frequency inverters

From July 1, 2571

For use with electric motors with power from 0.12 – 1000 kW, the frequency inverter must pass efficiency class IE2 specially designed for inverters.

Current requirements according to the Directive

Since 16 June, 2011 it is prohibited to place electric motors below energy efficiency class IE2 on the market, or to put them into service in the EU.

Since January 1, 2015, electric motors within the range 7.5 – 375 kW (2-, 4-, and 6-pole) must meet the requirements for IE3, or IE2 if the latter is combined with frequency inverters for speed control. The legal requirement thus provides 2 options.

From January 1, 2017, the requirements were tightened so that all motors 0.75 – 375 kW (2-, 4-, and 6-pole) must meet the requirements for IE3, or IE2 if they are combined with frequency inverters.

Exemptions from the current directive

  • Operation other than S1 (continuous drive) or S3 (intermittent drive) with a nominal cyclicity factor of 80 percent or lower.
  • Made for assembly with frequency inverters (integral motors).
  • Electric motors made for use in liquid.
  • Electric motors that are fully integrated into a product (e.g. a gear, pump, fan or compressor) where the energy performance is not tested independently of the product.
  • Brake motors

Electric motors intended for operation exclusively:

  • At altitudes exceeding 4 000 CHINAMFG above sea level.
  • If ambient air temperatures exceed 60°C.
  • Where maximum operating temperature exceeds 400°C.
  • Where ambient air temperatures are less than -30°C for all motors, or less than 0°C for motors with water cooling.
  • In explosive atmospheres (as defined in Directive 94/9 / EC 9)

The requirements do not apply to ships or other means of transport that carry goods or persons, since there must be specially designed engines for this purpose. (If the same mobile conveyor belt is used on ships as well as on land, the rules apply).

Also, the requirements do not apply to repair of motors previously placed on the market, or put into service – unless the repair is so extensive that the product will in practice be brand new.

If the motor is to be further exported for use outside Europe, the requirements do not apply.

Some other requirements apply to water-cooled motors

We have our own design and development team, we can provide customers with standard AC electric motors, We can also customize the single phase/three phase motors according to the special needs of customers.    Currently our main motor products cover 3 – phase high – efficiency motors,general 3 – phase motors, single phase motors, etc.
The main motor ranges: IE3 / YE3, IE2 / YE2, IE1 / Y2, Y, YS, MS, YC, YL, YY, MC, MY, ML motors.
 American standard NEMA motors
Russian standard GOST ANP motors
ZheJiang type AEEF motors,YC motors

Why choose us?
Guarantee of our motors:18-24months
General elivery time:15-30days
Price of motors: Most reasonable during your all suppliers
Packing:Strong export cartons/wooden case/plywood cases/pallets
Payment way with your order: T/T,LC,DP,etc

Sample order: Acceptable
Shipment way: Sea ship,Air flight,Express way,Land transfer way.

If you are looking for new better supplier or purchase electric motors, please feel free contact us now.You will get all what you want.

Application: Industrial, Universal, Household Appliances, Power Tools
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

induction motor

Can AC motors be used in both residential and commercial settings?

Yes, AC motors can be used in both residential and commercial settings. The versatility and wide range of applications of AC motors make them suitable for various environments and purposes.

In residential settings, AC motors are commonly found in household appliances such as refrigerators, air conditioners, washing machines, fans, and pumps. These motors are designed to meet the specific requirements of residential applications, providing reliable and efficient operation for everyday tasks. For example, air conditioners utilize AC motors to drive the compressor and fan, while washing machines use AC motors for agitating and spinning the drum.

In commercial settings, AC motors are extensively used in a wide range of applications across different industries. They power machinery, equipment, and systems that are crucial for commercial operations. Some common examples include:

  • Industrial machinery and manufacturing equipment: AC motors drive conveyor belts, pumps, compressors, mixers, fans, blowers, and other machinery used in manufacturing, production, and processing facilities.
  • HVAC systems: AC motors are used in commercial heating, ventilation, and air conditioning (HVAC) systems to drive fans, blowers, and pumps for air circulation, cooling, and heating.
  • Commercial refrigeration: AC motors are utilized in commercial refrigeration systems for powering compressors, condenser fans, and evaporator fans in supermarkets, restaurants, and cold storage facilities.
  • Office equipment: AC motors are present in various office equipment such as printers, photocopiers, scanners, and ventilation systems, ensuring their proper functioning.
  • Transportation: AC motors are used in electric vehicles, trams, trains, and other forms of electric transportation systems, providing the necessary propulsion.
  • Water and wastewater treatment: AC motors power pumps, mixers, and blowers in water treatment plants, wastewater treatment plants, and pumping stations.

The adaptability, efficiency, and controllability of AC motors make them suitable for a wide range of residential and commercial applications. Whether it’s powering household appliances or driving industrial machinery, AC motors play a vital role in meeting the diverse needs of both residential and commercial settings.

induction motor

Can AC motors be used in renewable energy systems, such as wind turbines?

Yes, AC motors can be used in renewable energy systems, including wind turbines. In fact, AC motors are commonly employed in various applications within wind turbines due to their numerous advantages. Here’s a detailed explanation:

1. Generator: In a wind turbine system, the AC motor often functions as a generator. As the wind turbine blades rotate, they drive the rotor of the generator, which converts the mechanical energy of the wind into electrical energy. AC generators are commonly used in wind turbines due to their efficiency, reliability, and compatibility with power grid systems.

2. Variable Speed Control: AC motors offer the advantage of variable speed control, which is crucial for wind turbines. The wind speed is variable, and in order to maximize energy capture, the rotor speed needs to be adjusted accordingly. AC motors, when used as generators, can adjust their rotational speed with the changing wind conditions by modifying the frequency and voltage of the output electrical signal.

3. Efficiency: AC motors are known for their high efficiency, which is an important factor in renewable energy systems. Wind turbines aim to convert as much of the wind energy into electrical energy as possible. AC motors, especially those designed for high efficiency, can help maximize the overall energy conversion efficiency of the wind turbine system.

4. Grid Integration: AC motors are well-suited for grid integration in renewable energy systems. The electrical output from the AC generator can be easily synchronized with the grid frequency and voltage, allowing for seamless integration of the wind turbine system with the existing power grid infrastructure. This facilitates the efficient distribution of the generated electricity to consumers.

5. Control and Monitoring: AC motors offer advanced control and monitoring capabilities, which are essential for wind turbine systems. The electrical parameters, such as voltage, frequency, and power output, can be easily monitored and controlled in AC motor-based generators. This allows for real-time monitoring of the wind turbine performance, fault detection, and optimization of the power generation process.

6. Availability and Standardization: AC motors are widely available in various sizes and power ratings, making them readily accessible for wind turbine applications. They are also well-standardized, ensuring compatibility with other system components and facilitating maintenance, repair, and replacement activities.

It’s worth noting that while AC motors are commonly used in wind turbines, there are other types of generators and motor technologies utilized in specific wind turbine designs, such as permanent magnet synchronous generators (PMSGs) or doubly-fed induction generators (DFIGs). These alternatives offer their own advantages and may be preferred in certain wind turbine configurations.

In summary, AC motors can indeed be used in renewable energy systems, including wind turbines. Their efficiency, variable speed control, grid integration capabilities, and advanced control features make them a suitable choice for converting wind energy into electrical energy in a reliable and efficient manner.

induction motor

How does the speed control mechanism work in AC motors?

The speed control mechanism in AC motors varies depending on the type of motor. Here, we will discuss the speed control methods used in two common types of AC motors: induction motors and synchronous motors.

Speed Control in Induction Motors:

Induction motors are typically designed to operate at a constant speed determined by the frequency of the AC power supply and the number of motor poles. However, there are several methods for controlling the speed of induction motors:

  1. Varying the Frequency: By varying the frequency of the AC power supply, the speed of an induction motor can be adjusted. This method is known as variable frequency drive (VFD) control. VFDs convert the incoming AC power supply into a variable frequency and voltage output, allowing precise control of motor speed. This method is commonly used in industrial applications where speed control is crucial, such as conveyors, pumps, and fans.
  2. Changing the Number of Stator Poles: The speed of an induction motor is inversely proportional to the number of stator poles. By changing the connections of the stator windings or using a motor with a different pole configuration, the speed can be adjusted. However, this method is less commonly used and is typically employed in specialized applications.
  3. Adding External Resistance: In some cases, external resistance can be added to the rotor circuit of an induction motor to control its speed. This method, known as rotor resistance control, involves inserting resistors in series with the rotor windings. By varying the resistance, the rotor current and torque can be adjusted, resulting in speed control. However, this method is less efficient and is mainly used in specific applications where precise control is not required.

Speed Control in Synchronous Motors:

Synchronous motors offer more precise speed control compared to induction motors due to their inherent synchronous operation. The following methods are commonly used for speed control in synchronous motors:

  1. Adjusting the AC Power Frequency: Similar to induction motors, changing the frequency of the AC power supply can control the speed of synchronous motors. By adjusting the power frequency, the synchronous speed of the motor can be altered. This method is often used in applications where precise speed control is required, such as industrial machinery and processes.
  2. Using a Variable Frequency Drive: Variable frequency drives (VFDs) can also be used to control the speed of synchronous motors. By converting the incoming AC power supply into a variable frequency and voltage output, VFDs can adjust the motor speed with high accuracy and efficiency.
  3. DC Field Control: In some synchronous motors, the rotor field is supplied by a direct current (DC) source, allowing for precise control over the motor’s speed. By adjusting the DC field current, the magnetic field strength and speed of the motor can be controlled. This method is commonly used in applications that require fine-tuned speed control, such as industrial processes and high-performance machinery.

These methods provide different ways to control the speed of AC motors, allowing for flexibility and adaptability in various applications. The choice of speed control mechanism depends on factors such as the motor type, desired speed range, accuracy requirements, efficiency considerations, and cost constraints.

China supplier CE 0.12kw-315kw Y2 Series Three Phase Asynchronous Electric Motor AC Motor Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower   vacuum pump adapter	China supplier CE 0.12kw-315kw Y2 Series Three Phase Asynchronous Electric Motor AC Motor Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower   vacuum pump adapter
editor by CX 2023-12-04

China wholesaler Three Phase Asynchronous AC Induction Electric Gear Reducer Fan Blower Vacuum Air Compressor Water Pump Universal Industry Machine Motor vacuum pump design

Product Description

Production Description

YE2 Series Cast of Iron Three Phase Induction Motor is specially designed for European market, whose terminal box is located on
the top of motor.They are totally enclosed and fan-cooling designed. They are newly designed in conformity with the relevant
requirements / rules of IEC&DIN42673 standards.
 

Type
 
YE2 
Power
 
0.75~315kw
Insulation
 
F / B, H/B
Voltage and frequency
 
380/400/415/660/690V  50/60hz
Speed
 
3000/1500/1000/750/600 rpm
Mounitng
 
IMB3/IMV1
Cooling and ventilation
 
TEFC in accordance with IC411 of IEC60034-6.
Winding
 
100% Cooper Wire
Protection class
 
IP54/IP55
Vibration
 
vibration class A, vibration class B is available on request.
Quality assurance
 
ISO9001
Site conditions
 
 from -15°C t0 +40°C and altitude below 1000 meters

Products Application, Value Added Service

PinnxunMotor can provide a complete set of optimal solutions for various Applications,Bring innovation and valueadded to our 
customers, At the same time, we can also formulate special solutions according to the different needed of customer 

Product  Process
 
Pinnxun always take good faith, responsibility, carefulness and CHINAMFG as our management philosophy, committedto providing
customers with superior quality products,every step in processs must be take full attention.

Qualification certification system

The key for ‘Pinxing’ long-terms cooperation is to continuously improve the quality of is products and service, By virtue of is
comprehensive process, quality management system and strict compliance with international mainstream standards.’Pinxing’
has established a quality management system that has passed ISO9001-2008 Quality management system certification

ISO14001 Environmental management system.
ISO9001-2008 Quality management system
ISO14001 Environmental management system
CE European Certification
IECEX CHINAMFG Ex Certification for Ex motors
ATEX European Ex Certification for Ex motors
EAC Russia GOST standard Ex certification for Ex motors
CQC China quality center energy conservation certification

Worldwide Marketing & Service Network 

Global Perfect Marketing service network is 1 of Pinxing’s advantage. we have 38 branches in china main city,5 branches in
the Abroad ,Our business penetrates more than 60 countries and regions including South America, North America,Europe, Asia
Middle East and Africa, Giving us rapid reach capacity from sales, service, procurement and Transportation since inception, Pinxing
always uphold the development strategy of market globalization. we segment and position customers needs and target market. our
products and service are widely used in global industry, and performance stable and safety.we custom different motors for different
industries

 

Application: Industrial,Universal,Power Tool
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 2/4/6/8/10/12 Pole
Customization:
Available

|

induction motor

What factors should be considered when selecting an AC motor for a particular application?

When selecting an AC motor for a particular application, several factors need to be considered to ensure the motor meets the requirements and performs optimally. Here are the key factors to consider:

  1. Power Requirements: Determine the power requirements of the application, including the required torque and speed. The motor should have adequate power output to meet the demands of the specific task. Consider factors such as starting torque, running torque, and speed range to ensure the motor can handle the load effectively.
  2. Motor Type: There are different types of AC motors, including induction motors, synchronous motors, and brushless DC motors. Each type has its own characteristics and advantages. Consider the application’s requirements and factors such as speed control, efficiency, and starting torque to determine the most suitable motor type.
  3. Environmental Conditions: Assess the environmental conditions in which the motor will operate. Factors such as temperature, humidity, dust, and vibration levels can impact motor performance and longevity. Choose a motor that is designed to withstand the specific environmental conditions of the application.
  4. Size and Space Constraints: Consider the available space for motor installation. Ensure that the physical dimensions of the motor, including its length, diameter, and mounting arrangement, are compatible with the available space. Additionally, consider the weight of the motor if it needs to be mounted or transported.
  5. Efficiency: Energy efficiency is an important consideration, as it can impact operational costs and environmental sustainability. Look for motors with high efficiency ratings, which indicate that they convert electrical energy into mechanical energy with minimal energy loss. Energy-efficient motors can lead to cost savings and reduced environmental impact over the motor’s lifespan.
  6. Control and Speed Requirements: Determine if the application requires precise speed control or if a fixed speed motor is sufficient. If variable speed control is needed, consider motors that can be easily controlled using variable frequency drives (VFDs) or other speed control mechanisms. For applications that require high-speed operation, select a motor that can achieve the desired speed range.
  7. Maintenance and Serviceability: Assess the maintenance requirements and serviceability of the motor. Consider factors such as the accessibility of motor components, ease of maintenance, availability of spare parts, and the manufacturer’s reputation for reliability and customer support. A motor that is easy to maintain and service can help minimize downtime and repair costs.
  8. Budget: Consider the budget constraints for the motor selection. Balance the desired features and performance with the available budget. In some cases, investing in a higher quality, more efficient motor upfront can lead to long-term cost savings due to reduced energy consumption and maintenance requirements.

By carefully considering these factors, it is possible to select an AC motor that aligns with the specific requirements of the application, ensuring optimal performance, efficiency, and reliability.

induction motor

Can AC motors be used in renewable energy systems, such as wind turbines?

Yes, AC motors can be used in renewable energy systems, including wind turbines. In fact, AC motors are commonly employed in various applications within wind turbines due to their numerous advantages. Here’s a detailed explanation:

1. Generator: In a wind turbine system, the AC motor often functions as a generator. As the wind turbine blades rotate, they drive the rotor of the generator, which converts the mechanical energy of the wind into electrical energy. AC generators are commonly used in wind turbines due to their efficiency, reliability, and compatibility with power grid systems.

2. Variable Speed Control: AC motors offer the advantage of variable speed control, which is crucial for wind turbines. The wind speed is variable, and in order to maximize energy capture, the rotor speed needs to be adjusted accordingly. AC motors, when used as generators, can adjust their rotational speed with the changing wind conditions by modifying the frequency and voltage of the output electrical signal.

3. Efficiency: AC motors are known for their high efficiency, which is an important factor in renewable energy systems. Wind turbines aim to convert as much of the wind energy into electrical energy as possible. AC motors, especially those designed for high efficiency, can help maximize the overall energy conversion efficiency of the wind turbine system.

4. Grid Integration: AC motors are well-suited for grid integration in renewable energy systems. The electrical output from the AC generator can be easily synchronized with the grid frequency and voltage, allowing for seamless integration of the wind turbine system with the existing power grid infrastructure. This facilitates the efficient distribution of the generated electricity to consumers.

5. Control and Monitoring: AC motors offer advanced control and monitoring capabilities, which are essential for wind turbine systems. The electrical parameters, such as voltage, frequency, and power output, can be easily monitored and controlled in AC motor-based generators. This allows for real-time monitoring of the wind turbine performance, fault detection, and optimization of the power generation process.

6. Availability and Standardization: AC motors are widely available in various sizes and power ratings, making them readily accessible for wind turbine applications. They are also well-standardized, ensuring compatibility with other system components and facilitating maintenance, repair, and replacement activities.

It’s worth noting that while AC motors are commonly used in wind turbines, there are other types of generators and motor technologies utilized in specific wind turbine designs, such as permanent magnet synchronous generators (PMSGs) or doubly-fed induction generators (DFIGs). These alternatives offer their own advantages and may be preferred in certain wind turbine configurations.

In summary, AC motors can indeed be used in renewable energy systems, including wind turbines. Their efficiency, variable speed control, grid integration capabilities, and advanced control features make them a suitable choice for converting wind energy into electrical energy in a reliable and efficient manner.

induction motor

What is an AC motor, and how does it differ from a DC motor?

An AC motor, also known as an alternating current motor, is a type of electric motor that operates on alternating current. It converts electrical energy into mechanical energy through the interaction of magnetic fields. AC motors are widely used in various applications, ranging from household appliances to industrial machinery. Here’s a detailed explanation of what an AC motor is and how it differs from a DC motor:

AC Motor:

An AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. These windings are typically made of copper wire and are arranged in specific configurations to create a rotating magnetic field when energized by an alternating current. The rotor, on the other hand, is the rotating part of the motor and is typically made of laminated steel cores with conducting bars or coils. The rotor windings are connected to a shaft, and their interaction with the rotating magnetic field produced by the stator causes the rotor to rotate.

The operation of an AC motor is based on the principles of electromagnetic induction. When the stator windings are energized with an AC power supply, the changing magnetic field induces a voltage in the rotor windings, which in turn creates a magnetic field. The interaction between the rotating magnetic field of the stator and the magnetic field of the rotor produces a torque, causing the rotor to rotate. The speed of rotation depends on the frequency of the AC power supply and the number of poles in the motor.

DC Motor:

A DC motor, also known as a direct current motor, operates on direct current. Unlike an AC motor, which relies on the interaction of magnetic fields to generate torque, a DC motor uses the principle of commutation to produce rotational motion. A DC motor consists of a stator and a rotor, similar to an AC motor. The stator contains the stator windings, while the rotor consists of a rotating armature with coils or permanent magnets.

In a DC motor, when a direct current is applied to the stator windings, a magnetic field is created. The rotor, either through the use of brushes and a commutator or electronic commutation, aligns itself with the magnetic field and begins to rotate. The direction of the current in the rotor windings is continuously reversed to ensure continuous rotation. The speed of a DC motor can be controlled by adjusting the voltage applied to the motor or by using electronic speed control methods.

Differences:

The main differences between AC motors and DC motors are as follows:

  • Power Source: AC motors operate on alternating current, which is the standard power supply in most residential and commercial buildings. DC motors, on the other hand, require direct current and typically require a power supply that converts AC to DC.
  • Construction: AC motors and DC motors have similar construction with stators and rotors, but the design and arrangement of the windings differ. AC motors generally have three-phase windings, while DC motors can have either armature windings or permanent magnets.
  • Speed Control: AC motors typically operate at fixed speeds determined by the frequency of the power supply and the number of poles. DC motors, on the other hand, offer more flexibility in speed control and can be easily adjusted over a wide range of speeds.
  • Efficiency: AC motors are generally more efficient than DC motors. AC motors can achieve higher power densities and are often more suitable for high-power applications. DC motors, however, offer better speed control and are commonly used in applications that require precise speed regulation.
  • Applications: AC motors are widely used in applications such as industrial machinery, HVAC systems, pumps, and compressors. DC motors find applications in robotics, electric vehicles, computer disk drives, and small appliances.

In conclusion, AC motors and DC motors differ in their power source, construction, speed control, efficiency, and applications. AC motors rely on the interaction of magnetic fields and operate on alternating current, while DC motors use commutation and operate on direct current. Each type of motor has its advantages and is suited for different applications based on factors such as power requirements, speed control needs, and efficiency considerations.

China wholesaler Three Phase Asynchronous AC Induction Electric Gear Reducer Fan Blower Vacuum Air Compressor Water Pump Universal Industry Machine Motor   vacuum pump design		China wholesaler Three Phase Asynchronous AC Induction Electric Gear Reducer Fan Blower Vacuum Air Compressor Water Pump Universal Industry Machine Motor   vacuum pump design
editor by CX 2023-11-16

China Electric Low Price Planetary Gear Reducer Stepper Motor NEMA23 with Driver Brake Encoder Available motor brushes

Merchandise Description

 

Solution Description

Planetary Equipment Stepping Motor :
Precision high-end upgrade with Nema8, Nema 11, Nema14, Nema 17, Nema23, Nema 24 
stepper motor low noise, low vibration, firm and durable. Increase torque at low speed.
Reduction ratio:1:3.7 , 1:5.2 , 1:14 , 1:19 ,1:27 ,1:51 , 1:71 ,1:100 ,1:139 , 1:189 ,1:264 , 1:369 ,And 48 hours delivery , in stock .

Application:
Automation control, medical equipment, textile machinery,and packaging machinery fields. Not only in the field of the automation industry, it also has a good use status in the home.   Products with low speed and inertia are often seen: electric curtains, electric shutters, etc
 

Item Parameters

Planetary Gear Box Specification:

Housing Material Steel
Bearing at Output Ball Bearings
Max.Radial Load(10mm from flange) 300N
Max.Shaft Axial Load 200N
Radial Play of Shaft (in close proximity to to Flange) ≤0.08mm
Axial Enjoy of Shaft ≤0.4mm
Backlash at No-load 1 stage≤1°,2stage≤1.2°,3stage≤1.5°

57HS Hybrid Stepping Motor Specifications:
 

Model No. Step Angle Motor Length(L1) Rated Recent Resistance Inductance Holding Torque # of Qualified prospects Rotor Inertia Mass Max.Gear Ratio
Voltage /Period /Period /Phase
One Shaft ( °) (L)mm V A Ω mH mN.m No. g.cm2 Kg  
57HS5417 1.8 fifty five 1.seven 2. .eighty five two.five 950 4 two hundred .64 ≤1:187

57HS5471 Planetary Gearbox Specs:
Reduction ratio 3.6 four.twenty five thirteen 15 eighteen 23 47 55 65 seventy seven ninety six 121 153 187
Complete Top(L1+L2) (mm) 92.eight 92.eight 104.4 104.4 104.4 104.4 one hundred fifteen.8 115.8 115.eight 115.eight 115.8 one hundred fifteen.8 126.9 126.9
Output torque ( mN.m) 3078 3634 10004 11543 13851 15000 30000 30000 30000 30000 30000 30000 30000 30000
Whole Fat(g) 1095 1095 1250 1250 1250 1250 1405 1405 1405 1405 1405 1405 1560 1560
Number of gear trains 1 2 3 4
Reducer Size(L2)   (mm) 37.eight 49.four 60.8 71.9
Performance 90% 81% 73% 66%

 

Comprehensive Images

Company Profile

ZheJiang UMot Engineering Co., Ltd. specializes in R&D and income of stepper motors, servo motors, linear modules and related movement management merchandise, customizing and designing higher-good quality motor merchandise for end users with specific requirements about the entire world, and supplying general options for motion control systems. Items are exported to a lot more than thirty nations and regions such as the United States, Germany, France, Italy, Russia, and Switzerland. The company’s main goods and program design and style have been broadly used in automation control, precision instruments, healthcare tools, wise house, 3D printing and several other fields.
Our firm has been acknowledged as a high-tech company by appropriate departments, has a comprehensive top quality administration system, has attained ISO9001, CE, RoHs and other relevant certifications, and holds a number of electrical patent certificates. “Focus, Professionalism, Concentration” in the area of automation of motor R&D and program manage solutions is the company’s enterprise function. “Be your most trusted partner” is the company’s service philosophy. We have usually been aiming to “make initial-course products with expert technology”, preserve rate with the moments, innovate consistently, and give more consumers with far better items and services.

FAQ

1. Shipping strategy:
one)Global Categorical supply DHL&FEDEX &UPS&TNT& 7-10days
two)Delivery by air 7-ten days
3)shipping by sea, shipping time relies upon on the vacation spot port.

two. Technological Help:
We can provide you with skilled technological help. And our goods top quality assure is 6 months. Also, we accept items custom-made.

three. Why ought to you get from us, not from other suppliers?
Skilled 1-to-1 motor custom-made. The world’s huge company of decision for large-quality suppliers. ISO9001:2008 high quality management program certification, through the CE, ROHS certification.

four. How to choose designs?
Prior to purchasing, make sure you make contact with us to confirm product No. and technical specs to steer clear of any misunderstanding.

5. Are you a manufacturing unit?
Of course, we are a factory, and we produce stepper motor/driver, Servo motor/driver.

 


/ Piece
|
1 Piece

(Min. Order)

###

Application: Automation Control, Medical Equipment, Textile Mac
Speed: Low Speed
Number of Stator: Two-Phase
Excitation Mode: HB-Hybrid
Function: Control, Driving
Number of Poles: 2

###

Samples:
US$ 65.0/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
Available

|


###

Housing Material Metal
Bearing at Output Ball Bearings
Max.Radial Load(10mm from flange) 300N
Max.Shaft Axial Load 200N
Radial Play of Shaft (near to Flange) 0.08mm
Axial Play of Shaft ≤0.4mm
Backlash at No-load 1 stage,2stage1.2°,3stage1.5°

###

Model No. Step Angle Motor Length(L1) Rated Current Resistance Inductance Holding Torque # of Leads Rotor Inertia Mass Max.Gear Ratio
Voltage /Phase /Phase /Phase
Single Shaft ( °) (L)mm V A Ω mH mN.m No. g.cm2 Kg  
57HS5417 1.8 55 1.7 2.0 0.85 2.5 950 4 200 0.64 1:187

###

57HS5471 Planetary Gearbox Specifications:
Reduction ratio 3.6 4.25 13 15 18 23 47 55 65 77 96 121 153 187
Total Height(L1+L2) (mm) 92.8 92.8 104.4 104.4 104.4 104.4 115.8 115.8 115.8 115.8 115.8 115.8 126.9 126.9
Output torque ( mN.m) 3078 3634 10004 11543 13851 15000 30000 30000 30000 30000 30000 30000 30000 30000
Total Weight(g) 1095 1095 1250 1250 1250 1250 1405 1405 1405 1405 1405 1405 1560 1560
Number of gear trains 1 2 3 4
Reducer Length(L2)   (mm) 37.8 49.4 60.8 71.9
Efficiency 90% 81% 73% 66%

/ Piece
|
1 Piece

(Min. Order)

###

Application: Automation Control, Medical Equipment, Textile Mac
Speed: Low Speed
Number of Stator: Two-Phase
Excitation Mode: HB-Hybrid
Function: Control, Driving
Number of Poles: 2

###

Samples:
US$ 65.0/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
Available

|


###

Housing Material Metal
Bearing at Output Ball Bearings
Max.Radial Load(10mm from flange) 300N
Max.Shaft Axial Load 200N
Radial Play of Shaft (near to Flange) 0.08mm
Axial Play of Shaft ≤0.4mm
Backlash at No-load 1 stage,2stage1.2°,3stage1.5°

###

Model No. Step Angle Motor Length(L1) Rated Current Resistance Inductance Holding Torque # of Leads Rotor Inertia Mass Max.Gear Ratio
Voltage /Phase /Phase /Phase
Single Shaft ( °) (L)mm V A Ω mH mN.m No. g.cm2 Kg  
57HS5417 1.8 55 1.7 2.0 0.85 2.5 950 4 200 0.64 1:187

###

57HS5471 Planetary Gearbox Specifications:
Reduction ratio 3.6 4.25 13 15 18 23 47 55 65 77 96 121 153 187
Total Height(L1+L2) (mm) 92.8 92.8 104.4 104.4 104.4 104.4 115.8 115.8 115.8 115.8 115.8 115.8 126.9 126.9
Output torque ( mN.m) 3078 3634 10004 11543 13851 15000 30000 30000 30000 30000 30000 30000 30000 30000
Total Weight(g) 1095 1095 1250 1250 1250 1250 1405 1405 1405 1405 1405 1405 1560 1560
Number of gear trains 1 2 3 4
Reducer Length(L2)   (mm) 37.8 49.4 60.8 71.9
Efficiency 90% 81% 73% 66%

How to Assemble a Planetary Motor

A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.

VPLite

If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.
Motor

VersaPlanetary

The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.

Self-centering planetary gears

A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Motor

Encoders

A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.

Cost

There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Motor

Applications

There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.

China Electric Low Price Planetary Gear Reducer Stepper Motor NEMA23 with Driver Brake Encoder Available     motor brushesChina Electric Low Price Planetary Gear Reducer Stepper Motor NEMA23 with Driver Brake Encoder Available     motor brushes
editor by CX 2023-04-04

in Marrakech Morocco sales price shop near me near me shop factory supplier Electric DC Motor 12V 50W Worm Gear Reducer Motor manufacturer best Cost Custom Cheap wholesaler

  in Marrakech Morocco  sales   price   shop   near me   near me shop   factory   supplier Electric DC Motor 12V 50W Worm Gear Reducer Motor manufacturer   best   Cost   Custom   Cheap   wholesaler

Our technicians and engineers have 23 years of Expertise in the Bearing Business. With many years’ encounter in these traces, we have been distinguished from other suppliers in China by our benefits in competitive pricing, on-time shipping, prompt responses, on-hand engineering assist and good following-income providers. If you are fascinated in any of our merchandise or would like to talk about a prospective buy, make sure you feel free of charge to make contact with us. Electric powered DC Motor 12V 50W Worm Equipment EPT Motor

Design:D59L-12v50w-65rpm

Variety dc worm equipment motor
Motor Diameter 59mm
Voltage 12v 24v 36v 42v 48v
EPT le60W
Torque le12N.M
Speed le250RPM
Equipment of ratio fifty six:1 28:1 70:one
Equipment Modulus 70:one M=.8
56:one 28:one M=1
Material of equipment Plastic /brass
OEM/ODM Support Accept
Utilization Electrical outfits drying rack ,electrical adjustable table ,property equipment,workplace EPT tools,XiHu (West Lake) Dis.Hu (West Lake) Dis.age doorway opener,electric tools .

HangZhou HuiEPT Science amp EPT Co.,Ltd is a subsidiary of HangZhou Wewin Motor Co.,Ltd.The manufacturing unit is situated in EPTdu,HangZhou,we can style and manufacture of motors in accordance to all our customers’ calls for so significantly,we can manufacture about 60,000 motors for every thirty day period.

Our main market place:

Europe,The united states and Asia,incXiHu (West Lake) Dis.Hu (West Lake) Dis. United Kingdom,Germany,EPT,France,Sweden, United Condition,EPTrazil,India,Korea and so on.

Business Positive aspects:

one. EPTig production ability, quick delivery.

2. Strict QC inspecting rules: all goods have to be a hundred% inspected prior to shipping and delivery.

3. OEM/ODM services are offered

4. 24 hours on-line services.

five. Prompt quotation for your inquiry

6. EPT,dependability and EPT item existence.

7. Skilled company offers aggressive value.

8. Diversified abundant experienced skilled employees.

A lot more Applications:

Vehicle EPTlator ,XiHu (West Lake) Dis.Hu (West Lake) Dis.age doorway opener ,gate operator, EPT barrier,wheelchair ,electric powered car ,h2o pump ,oil pump,sewing EPT,vending EPT, blender EPT,welding EPT,floor poEPTr,truck raise,stair carry,clinic bed ,hydraulic pump electrical forklift.

RFQ:

Q: Are you buying and selling business or manufacturer ?

A: We are Integration of industry and trade, with above twenty many years experience in DC worm gear motor. Our business have accrued competent creation line, full administration and EPTful research assistance, which could match all of the customers’ needs and make them fulfillment.

Q: What is your principal item?

DC Motor: Gear motor, Square motor, Stepped motor, and Micro motor
-Welding products: Wire feeder, Welding rod, Welding Torch, Earth clamp, Electrode holder, and Rectifier

Q: What if I don’t know which DC motor EPT?

A: Don’t fret, Send out as significantly data as you can, our staff will support you find the rigEPT a single you are hunting for.

Q: What is your conditions of payment ?

A: Payment lt=1000USD, a hundred% EPT. Payment gt=1000USD, 30% T/T EPT ,harmony ahead of shippment.
If you have one more issue, pls feel cost-free to speak to us as beneath:

Q: How to supply:

A: EPTy sea – EPTuyer appoint EPTer, or our sales team discover appropriate forwarEPTfor purchasers.

EPTy air – EPTuyer provide accumulate categorical account, or our product sales team find suited categorical for customers. (Largely for sample)
Other folks – Truly,samples send by DHL,UPS, TNT and Fedex etc. We organize to delivery goods to some location from EPT appointed by consumers.

Q: How EPT is your supply time?
A: EPTly it is 5-ten daEPTif the goods are in stock. or it is fifteen-20 daEPTif the products are not in stock, it is in accordance to amount.

  in Marrakech Morocco  sales   price   shop   near me   near me shop   factory   supplier Electric DC Motor 12V 50W Worm Gear Reducer Motor manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Marrakech Morocco  sales   price   shop   near me   near me shop   factory   supplier Electric DC Motor 12V 50W Worm Gear Reducer Motor manufacturer   best   Cost   Custom   Cheap   wholesaler

in Casablanca Morocco sales price shop near me near me shop factory supplier Helical-Worm Motor Reducer S47 Sf47 SA47 Saf47 Sat47 Saz47 Helical Worm Gear Speed Reducer Gearbox Motor Electric manufacturer best Cost Custom Cheap wholesaler

  in Casablanca Morocco  sales   price   shop   near me   near me shop   factory   supplier Helical-Worm Motor Reducer S47 Sf47 SA47 Saf47 Sat47 Saz47 Helical Worm Gear Speed Reducer Gearbox Motor Electric manufacturer   best   Cost   Custom   Cheap   wholesaler

EPG has been productively certified by ISO9002 Good quality Management System, ISO9001 Top quality Management System, API certification, ISO/TS16949:2002 and ISO10012 measurement management program. Full use has been made of all kinds of innovative strategies and technological innovation to get to excelsior production. We are looking ahead to creating productive organization relationships with new consumers close to the entire world in the potential.

s series reduction EPT helical worm equipment motor reduction gear packing containers helical worm EPT with motor collection gear

Product Description

Item Application

S collection strong shaft helical worm 220v ac equipment motor EPT is a single variety of Helical worm EPT ,designed as Modularization and high-stainless forged iron situation . It is combination of helical gear and worm equipment ,which with increased effectiveness and energy than basic aluminum worm EPT . Thanks to their outstXiHu (West Lake) Dis.Hu (West Lake) Dis. effectiveness, these drives can be employed in every EPT sector and personalized to person torque and speed specifications. EPT equipment ratios afforded by the helical-worm equipment stage and the minimal noise ranges throughout operation make these gearmotors excellent reduced-value options for easy applications
1) Output pace: .six~1,571r/min
2) Output torque: up to 4530N.m
3) EPT EPT: .12~22kW
4) Mounted sort: foot-mounted and flange-mounted mounting

Gear EPT 20CrMnTi
Scenario Materia EPT250
Shaft EPT 20crmn
Gear Processing Grinding finish by HOFLER Grinding EPTs
Coloration Tailored
Noise Take a look at EPTellow 65dEPT
Machining precision of gears accurate grinding, 6 Grade
Warmth treatment method tempering, Cementating, quenching, etc
EPTrand of bearings C ampU HREPT. LYCZWZ SKFNSK
EPTrand of oil seal NAK or other brand
Noise(MAX) sixty five-70dEPT
Temp rise (MAX) 40C
Temp increase(Oil)(MAX) 50C

Primary Functions

one) Basic structure in linear sort ,effortless in installation and maintation.

2) Adopting EPTd globe popular model factors in pneumatic elements ,electric areas and operation elements.

three) Large stress double crank to management the die opening and closing.

4) Working in a substantial automatization and intellectualization,no pollution

five) Implement a linker to hook up with the air conveyor ,which can straight inline with filling EPT .

one. Solution Traits:
S sequence helical worm EPT adopts the helical worm gears to make its construction more sensible. S sequence not only has increased EPT efficency and loading ability than these solitary-stage worm wheel EPT, but also scaled-down quantity and visual appeal. Furthermore, S collection worm EPT has higher EPT ratio, and can be combined with various EPTes and pace variators to fulfill the various requirements.

two. Framework:
S sequence EPT are offered in the following types:
(1) SY Foot mounted helical worm EPT with solid shaft
(2) SAY Helical worm EPT with hollow shaft
(three) SAZY Tiny flange mounted helical worm EPT with hollow shaft
(four) SA (S,SF,SAF,SAZ)Y Assemble users’ motor or EPT motor, flange is necessary
(5) SFY Flange mounted helical worm EPT with strong shaft
(six) SAFY Flange mounted helical worm EPT with hollow shaft
(seven) SATY Torque arm mounted helical worm EPT with hollow shaft
(8) S (SF,SA,SAF,SAZ) S Shaft enter helical worm EPT
(9) SA (S,SF,SAF,SAZ)RY Blended helical worm EPT
(ten) SA (S,SF,SAF,SAZ)SR Shaft input combined helical worm EPT

three. Comprehensive parameters:

Size 38 48 fifty eight 68 seventy eight 88 ninety eight
Structure S SA SF SAF SAT SAZ
Enter EPT(KW) .eighteen-.75 .eighteen-one.five .eighteen-three .25-5.five .55-seven.five .seventy five-fifteen 1.five-22
Ratio 10.27-152 eleven.forty six-244.seventy four 10.78-196.21 eleven.55-227.20 9.ninety six-241.09 11.eighty three-222 12.75-230.48
MaXiHu (West Lake) Dis.mum torque(N.m) 90 a hundred and seventy 295 520 1270 2280 4000

4.Applications:
EPT products are commonly utilized in electrical energy, coal, cement, metallurgy, harbor, agriculture, delivery, lifting, setting protection, stage, logistic, weaving, paper generating, ligEPT sector, plastics and other areas.

five. EPT Knowledge:
Rated EPT:.eighteen~22KW
Output Pace: .sixteen~147r/min
Output Torque:ninety~4000N.m
Mounted Kind:Foot-mounted, flange mounted, shaft-mounted, torque arm mounted

Business data

EstabEPTd in 1985, EPT EPT EPTRY CO., LTD is a higher and new EPT EPTrprise engaging in research, deveXiHu (West Lake) Dis.Hu (West Lake) Dis. and manufacture for EPT amp velocity variator, 1 of the director member of EPT EPT Affiliation of EPT EPT EPTry.
It handles far more than forty,000 sq. meters, has much more than 400 employees , twenty% of whom are experts, geared up with a lot more than three hundred sets the most EPTd accurate numerical control gear, incXiHu (West Lake) Dis.Hu (West Lake) Dis. German HOFLER forming equipment grinding EPT to enhance top quality.
set up a lot more than 30 national revenue branches to provide our consumers in time and thoroughly.
Our products also exported to far more than 30 nations around the world primary in Europe, Asia America, and Africa, with substantial track record.

EPT manage

EPT ampDelivery

EPT Details: StXiHu (West Lake) Dis.Hu (West Lake) Dis.rd carton/Pallet/StXiHu (West Lake) Dis.Hu (West Lake) Dis.rd picket case

Shipping and delivery Details : fifteen-thirty working daEPTupon payment


Associated Solution

EPT Planetary EPT Robot RV EPT pace EPT
Customized produced Non-stXiHu (West Lake) Dis.Hu (West Lake) Dis.rd EPT UDL Sequence Variator
PYZ Series Helical Tooth Shaft Mounted EPT 8000 Series Cycloidal EPT
SLT Collection Spiral EPTl EPT SLSWL Collection Worm Screw Jack
SLP Collection Planetary EPT SLH/SLEPT Sequence Higher EPT EPT
NMRV Series Worm EPT EPTKM Collection Helical-hypoid EPT
SLRC Collection Helical EPT SLSMR Sequence Shaft Mounted EPT
SLXG Collection Shaft Mounted EPT X/EPT Sequence Cycloidal EPT
SLR/SEPT/SLK/SLS Series Helical EPT AC/DC EPT

Principal item record: sixteen collection incXiHu (West Lake) Dis.Hu (West Lake) Dis. SLR/SLS/SLK/SEPT collection challenging tooth flank gear EPT , SLRC collection aluminium situation helical equipment EPTs,SLHSLEPT collection large EPT velocity EPT, SLP series planetary speed EPT, X/EPT sequence cycloidal EPT, SLXG sequence shaft-mounted equipment box, SLSWL collection worm screw jack, SLT series helical cone gear box, completely much more than 10,000 ratios, numerous specification make us at the head of domestic EPT sector, broadly provide the mechanical EPT area of ligEPT amp hefty market this kind of as: beer amp EPTrage, mining EPT, foodstuff EPT, textile printing, rubber amp plastic content, petrochemical business, jack-up transportation, pharmacy amp approach hides, environmental protection products.


Certificate

FAQ

1.Payment Expression: TT, L/C

2.Delivery time: about 30 daEPTfrom EPT payment.

3.We take tailored merchandise as for every your EPT requirement.

4.XiHu (West Lake) Dis.hu (West Lake) Dis.traces for the Selection:Normally we can select 1 EPT which is suitable for you with some informations from you,these kinds of as ratio/motor pace/mounting dimension/ out torque and many others.

five.If the minimal orEPTamount is in excess of $ten thousand, there are preferential.

Q1: What details ought to I tell you to affirm the merchandise?

A:Model/Size, EPT Ratio, Shaft directions amp OrEPTquantity.

Q2: What can i do if I never know which 1 EPT?

A:Dont be concerned, Deliver as much details as you can, our crew will support you find the rigEPT a single you are searching for.

Q3: What is your product warranty period?

A:We supply one year warranty since the vessel departure date still left EPT.

This autumn: Are you buying and selling organization or maker ?

A: We are manufacturing unit.

Q5: How EPT is your shipping and delivery time?

A: EPTly it is five-10 daEPTif the items are in inventory. or it is fifteen-20 daEPTif the merchandise are not in inventory, it is in accordance to quantity.

Q6: Do you supply samples ? is it cost-free or further ?

A: Indeed, we could provide the sample for totally free cost but do not pay the cost of freight.

Q7: What is your phrases of payment ?

A: Payment lt=1000USD, one hundred% EPT. Payment gt=1000USD, 30% T/T EPT ,equilibrium before shippment.

If you have an additional issue, pls really feel free of charge to contact us as under:

Make contact with Us

  in Casablanca Morocco  sales   price   shop   near me   near me shop   factory   supplier Helical-Worm Motor Reducer S47 Sf47 SA47 Saf47 Sat47 Saz47 Helical Worm Gear Speed Reducer Gearbox Motor Electric manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Casablanca Morocco  sales   price   shop   near me   near me shop   factory   supplier Helical-Worm Motor Reducer S47 Sf47 SA47 Saf47 Sat47 Saz47 Helical Worm Gear Speed Reducer Gearbox Motor Electric manufacturer   best   Cost   Custom   Cheap   wholesaler

in Tolyatti Russian Federation sales price shop near me near me shop factory supplier Hot Electric Motor Worm Gear Reducer for Construction Hoist and Lifting manufacturer best Cost Custom Cheap wholesaler

  in Tolyatti Russian Federation  sales   price   shop   near me   near me shop   factory   supplier Hot Electric Motor Worm Gear Reducer for Construction Hoist and Lifting manufacturer   best   Cost   Custom   Cheap   wholesaler

With a lot of years’ experience in these traces, we have been distinguished from other suppliers in China by our advantages in competitive pricing, on-time supply, prompt responses, on-hand engineering assist and very good right after-sales services. focus in power transmission merchandise, CATV items, mechanical seal, hydraulic and Pheumatic, and promotional goods. We also can design and make non-standard goods to meet up with customers’ particular needs. Sizzling Electric Motor Worm Gear EPT for Construction Hoist and Lifting

Applications:

Mechanical equipment, vehicle production, textile printing and dyeing, environmental protection engineering, steel metallurgy, lifting transportation, mining transportation, creating ceramics and other EPT.

Functions:
one. Shaft of the gear grinding precision up to 5-6
two. 7 heavy heat remedy process
3. Industry’s first Makes use of the interference tolerance very hot into the industry
four. High high quality motor substantial pace bearing
five. Motor in accordance with the point out stXiHu (West Lake) Dis.Hu (West Lake) Dis.rd of GEPT/T28575-2012 for secondary strength efficiency
6. Use 20 crmnti shaft equipment substance, tooth of carburizing and quenching HRC58-sixty one
7. The motor adopts EPT50A600 36 EPT designed for chilly rolled silicon-metal sheet
eight. Pick QZY – two/one hundred eighty class H large temperature resistant enameled wire insulation course
nine. Mchine EPT efficiency of much more than 97%
10. The shell is manufactured of higher good quality aluminum alloy portray craft lovely wear-resisting resistance to large temperature

Dimensions(mm)

HP Ratio Model A A1 Foot Dimension J K M Y Z Excess weight(kg)
D E F G H L
100W(one/8HP) 1/five-one/50(EPT) 18CV 250 255 fifty one hundred forty a hundred twenty five a hundred twenty five 9 ten sixteen 40 127 7 one hundred and five six.2
1/5-1/one hundred twenty 22CV 290 295 148 185 a hundred and seventy 160 eleven twelve seventeen.five fifty 127 3.5 a hundred and five seven.five

200W(one/4HP)

one/three-one/thirty(EPT) 18CV 250 255 fifty 140 125 125 nine 10 16 40 127 7 105 6.five
1/five-1/one hundred twenty 22CV 310 315 148 185 a hundred and seventy 160 eleven 12 17.five fifty 127 three.five one zero five eight.5
one/one hundred-1/two hundred 28CV 325 330 one hundred seventy 220 two hundred a hundred ninety 11 thirteen 23 60 127 three.5 a hundred and five nine

400W(1/2HP)

one/3-1/thirty(EPT) 18CV 270 275 50 a hundred and forty 125 a hundred twenty five nine ten 16 forty 127 7 one zero five six.5
one/3-1/one hundred twenty 22CV 320 325 148 185 a hundred and seventy 160 eleven 12 17.5 fifty 157 three.five one hundred fifteen 9.five
one/5-1/one hundred 28CV 345 350 one hundred seventy 220 200 one hundred ninety 11 13 23 60 157 four one hundred fifteen 12.5
1/100-one/two hundred 32CV 385 390 185 255 240 220 thirteen fifteen 31 70 157 4 115 28
750W(1HP) one/3-1/forty 28CV 365 370 a hundred and seventy 220 200 a hundred ninety eleven thirteen 23 68 157 four a hundred twenty five 16
one/five-1/120 32CV 415 420 185 255 240 220 13 fifteen 31 70 157 four a hundred twenty five 22
1/100-one/two hundred 40CV 440 445 230 310 285 270 fifteen 21 36 85 157 160 140 52
one.1KW(one.5HP) 1/three-1/40 28CV 365 370 a hundred and seventy 220 200 190 eleven 13 23 68 157 4 125 16
one/5-one/sixty 32CV 405 410 185 255 240 220 thirteen 15 31 70 187 four one hundred fifty 28
1.5KW(2HP) 1/3-one/40 32CV 450 455 185 255 240 220 thirteen fifteen 31 70 187 four 150 28
one/5-one/100 40CV 490 495 230 310 285 270 fifteen 21 36 eighty five 187 five one hundred forty 42
1/a hundred-1/200 50CV 570 575 280 390 360 360 19 23 51 ninety two 187 5 a hundred and forty seventy seven
two.2KW(3HP) 1/3-1/40 32CV 490 495 185 255 240 220 13 fifteen 31 70 187 5 a hundred and fifty 28
1/three-one/forty 40CV 505 515 230 310 285 270 15 21 36 85 187 5 one hundred fifty 48
one/5-one/100 50CV 585 595 280 390 370 354 19 23 fifty one 92 187 five 150 70
3KW(4HP) 1/3-one/40 40CV 505 515 230 310 285 270 fifteen 21 36 eighty five 194 five a hundred and fifty 48
one/5-one/100 50CV 585 595 280 390 370 354 19 23 fifty one 92 194 5 a hundred and fifty 84
4KW(5HP) one/3-one/10 40CV 530 540 230 310 285 270 fifteen 21 36 85 220 five a hundred and seventy 67
one/3-one/eighty 50CV 610 620 280 390 370 354 19 23 51 ninety two 220 five 170 ninety two
1/6-one/ninety 60CV 675 685 350 440 416 399 24 28 fifty five 112 220 5 170 a hundred twenty five
5.5KW(seven.5HP) one/3-one/20 50CV 660 670 280 390 370 354 19 23 51 ninety two 258 5 two hundred 103
one/three-one/50 60CV 725 735 350 440 416 399 24 28 fifty five 112 258 5 two hundred one hundred thirty five
seven.5KW(10HP) one/3-one/twenty 50CV 700 710 230 390 370 354 19 23 51 92 258 five two hundred 113
1/three-one/fifty 60CV 765 775 350 440 416 399 24 28 fifty five 112 258 five 200 145
11KW(15HP) one/three-one/25 60CV 815 350 440 416 399 24 28 fifty five 112 310 5 250 one hundred sixty five
15KW(20HP) one/3-one/25 60CV 855 350 440 416 399 24 28 55 112 320 five 250 175

EPT amp Transport

1) ten~20 operating daEPTfor ready products.
a) Urgently make sure you notify us EPT.

two)We offer wood situation for EPT package deal.
a)Specific needs is considerable.

three)We help shipping ports: SHEN ZHEN, HONG KONG.
a) Other delivery port is substantial.

four)We settle for FOEPT, CEPT price.

Our Services

a. We give 1-calendar year right after sale service (except for the donning elements).
b. We support overEPT education for EPT installation and working.
c. Our engineers will be online for 24 several hours.
d. Welcome to go to our manufacturing unit, we would really like to pick you up at HangZhou airport.
e. Photographs or online video for EPT working and set up are available.

Organization Info

HangZhou YTD EPT Co., Ltd is a provider that EPTizes in deveXiHu (West Lake) Dis.Hu (West Lake) Dis.ing, designing and manufacturing all types of computerized EPT.
Such as glass cutting EPT, poEPTng EPT, engraving EPT, tempering furnace ,coating EPT, Gear EPT ,and many others.
Inform us what you require, EPT, options, good right after income services?
Come to us, we have a professional staff with wealthy knowledge to assist you.

EPT coverage: top quality is our soul, we adhere strictly to ISO 9001 quality management system. We pay out interest to each detail, just take treatment of every element, consider our ideal to be outstanding.

Superb goods, reliability very first, earn-win cooperation—– YTD will alwaEPTbe your most honest companion.

FAQ

one. How can i EPT you about EPT good quality?
A: The thorough EPT technical specs (incXiHu (West Lake) Dis.Hu (West Lake) Dis. every EPT components) will be enclosd behind the agreement.

2. Can you send engineers to my place?
A: Sure, of course. We assistance overEPT education for EPT installation, working or soon after sale services.

3. May i go to your manufacturing unit and check out the production plan?
A:Certain. It would be our enjoyment to show our manufacturing facility to your esteemed corporation.

For much more particulars remember to click the button quotcontact quot below,
or just hook up us by:

HangZhou YTD EPT CO., LTD
Elaine XiHu (West Lake) Dis.e
Mob: 15707498210

  in Tolyatti Russian Federation  sales   price   shop   near me   near me shop   factory   supplier Hot Electric Motor Worm Gear Reducer for Construction Hoist and Lifting manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Tolyatti Russian Federation  sales   price   shop   near me   near me shop   factory   supplier Hot Electric Motor Worm Gear Reducer for Construction Hoist and Lifting manufacturer   best   Cost   Custom   Cheap   wholesaler