Tag Archives: water pump motor

China Custom High Effciency and High Voltage AC Asynchronous Squirrel Cage Induction Electric Motor for Water Pump, Air Compreesor, Gear Reducer Fan Blower (Y2/YE3 Series) vacuum pump engine

Product Description

Why choose us ?
ELECTRIC MOTOR FEATURES  

Electric motor frame from 56 – 355, output range from 0.17HP to 430HP

Motor mounting type B3 (IM 1001), B35 (IM 2001), B5 (IM 3001), B14 (IM 3601), B34 (IM 2101)

Optional voltage 110V, 120V, 220V, 240V, 220/380V, 230V/400V, 380V/660V, 50HZ or 60HZ

Protection type IP44, IP54, IP55 on request 

Multiple mounting arrangement for optional           
Aluminum frame, end shields and base    

Strong cast iron frame
High strength cable
Shaft key and protector supplied        
Superior paint finish         
45# steel shaft and stainless steel shaft is optional
Electric motor continuous duty S1,S4
Electric motor have vacuum impregnation for insulation
Electric motor is class F insulation and class H insulation is optional
Electric motor has been make according to ISO9001, CE, UL, CCC, GS request

All of our products are make according to GOST, RoHS and IEC standard.

High performance and IE1, IE2, IE3 efficiency  

 

OUR ELECRIC MOTOR FOR CUSTOMER BENEFITS

Electricity saving and quiet operation
Electric motor can withstand water, dust and vermin
Electric motor very easy installation
Electric motor dependable Corrosion resistant and long life to work
Reliability performance and very competitive price.
 

HOW TO MAKE MOTOR ON CHINAMFG COMPANY

1. Silicon steel DR510, 800, 600, 360 standard use stamping of lamination stator and rotor die-casting

2. 100% copper winding and inserting stator (manual and semi-automatically)

3. Stator Vacuum impregnation and drying

4. CNC machining motor shaft, frame, end shields, etc

5. Professional workman inspecting spare parts every processing

6. Electric motor assembly product line

7. Electric motor will 100% test before painting.

8. Electric motor spray-paint on motor painting product line

9. Electric motor will 100% check again before packing.

An electric motor from material to finish motor, must pass 15 time check, and 100% testing, output power, voltage, electric current, non-load, 50% load, 75% load, 100% load and check the nameplate, packing. Finally shipping to our customer.

Att:Our company price was based on high height cold rolled steel stator to promise the efficiency ,if you need to cheaper ,you can choose short height stator or hot cold rolled steel stator ,thankyou

Product details 

YE3 PARAMETERS

SYNCHRONOUS OUTPUT SPEED=3000RPM     FREQUENCY=50HZ  VOLTAGE=380V 

MODEL

POWER 

(KW)

CURRENT 

(A)

SPEED  

(RPM)

EFF

POWER 

FACTOR

RATED 

TORQUE

TST IST TMAX

NOISE 

dB(A)

YE3-63M1-2 0.18kw 0.53 2720 63.9 0.8 0.63 2.2 5.5 2.2 61
YE3-63M2-2 0.25kw 0.7 2720 97.1 0.81 0.88 2.2 5.5 2.2 61
YE3-71M1-2 0.37kw 1 2740 69 0.81 1.29 2.2 6.1 2.2 62
YE3-71M2-2 0.55kw 1.4 2740 72.3 0.82 1.92 2.2 6.1 2.2 62
YE3-801-2 0.75kw 1.8 2830 80.7 0.83 2.5 2.2 7 2.3 62
YE3-802-2 1.1kw 2.5 2840 82.7 0.83 3.65 2.2 7.3 2.3 62
YE3-90S-2 1.5kw 3.4 2840 84.2 0.84 4.97 2.2 7.6 2.3 67
YE3-90L-2 2.2kw 4.8 2840 85.9 0.85 7.3 2.2 7.6 2.3 67
YE3-100L-2 3kw 6.3 2870 87.1 0.87 9.95 2.2 7.8 2.3 74
YE3-112M-2 4kw 8.2 2890 88.1 0.88 13.1 2.2 8.3 2.3 77
YE3-132S1-2 5.5kw 11.1 2900 89.2 0.88 17.9 2 8.3 2.3 79
YE3-132S2-2 7.5kw 15 2900 90.1 0.89 24.4 2 7.9 2.3 79
YE3-160M1-2 11kw 21.3 2930 912 0.89 35.6 2 8.1 2.3 81
YE3-160M2-2 15kw 28.7 2930 91.9 0.89 48.6 2 8.1 2.3 81
YE3-160L-2 18.5kw 34.7 2930 92.4 0.89 60 2 8.2 2.3 81
YE3–180M-2 22kw 41.2 2940 92.7 0.89 71.2 2 8.2 2.3 83
YE3-200-L1-2 30kw 55.3 2950 93.3 0.89 96.6 2 7.6 2.3 84
YE3-200L2-2 37kw 67.9 2950 93.7 0.89 119 2 7.6 2.3 84
YE3-225M-2 45kw 82.1 2970 94 0.89 145 2 7.7 2.3 86
YE3-250M-2 55kw 100.1 2970 94.3 0.89 177 2 7.7 2.3 89
YE3-280S-2 75kw 134 2970 94.7 0.89 241 1.8 7.1 2.3 91
YE3-280M-2 90kw 160.2 2970 95 0.89 289 1.8 7.1 2.3 91

SYNCHRONOUS OUTPUT SPEED=1500RPM     FREQUENCY=50HZ  VOLTAGE=380V

MODEL

POWER 

(KW)

CURRENT 

(A)

SPEED 

(RPM)

EFF

POWER 

FACTOR

RATED 

TORQUE

TST IST TMAX

NOISE 

dB(A)

YE3-63M1-4 0.12kw 0.45 1310rpm 55.8 0.72 0.87 2.1 4.4 2.2 52
YE3-63M2-4 0.18kw 0.64 1310rpm 58.6 0.73 1.31 2.1 4.4 2.2 52
YE3-71M1-4 0.25kw 0.81 1330rpm 63.6 0.74 1.8 2.1 5.2 2.2 55
YE3-71M2-4 0.37kw 1.1 1330rpm 65.3 0.75 2.66 2.1 5.2 2.2 55
YE3-801-4 0.55kw 1.4 1390rpm 80.6 0.75 3.67 2.3 6.5 2.3 56
YE3-8002-4 0.75kw 1.9 1390rpm 82.5 0.75 5.01 2.3 6.6 2.3 56
YE3-90S-4 1.1kw 2.7 1400rpm 84.1 0.76 7.35 2.3 6.8 2.3 59
YE3-90L-4 1.5kw 3.6 1400rpm 85.3 0.77 10 2.3 7 2.3 59
YE3-100L1-4 2.2kw 4.8 1430rpm 86.7 0.81 14.6 2.3 7.6 2.3 64
YE3-100L2-4 3kw 6.6 1430rpm 87.7 0.82 19.9 2.3 7.6 2.3 64
YE3-112M-4 4kw 8.6 1440rpm 88.6 0.82 26.3 2.2 7.8 2.3 65
YE3-132S-4 5.5kw 11.6 1440rpm 89.6 0.83 35.9 2 7.9 2.3 71
YE3-132M-4 7.5kw 14.6 1440rpm 90.4 0.84 48.9 2 7.5 2.3 71
YE3-160M-4 11kw 22.6 1460rpm 91.4 0.85 71.5 2 7.7 2.3 73
YE3-160L-4 15kw 29.3 1460rpm 92.1 0.86 97.4 2 7.8 2.3 73
YE3-180M-4 18.5kw 35.45 1470rpm 92.6 0.86 120 2 7.8 2.3 76
YE3-180L-4 22kw 42.35 1470rpm 93 0.86 143 2 7.8 2.3 76
YE3-200L-4 30kw 57.6 1475rpm 93.6 0.86 194 2 7.3 2.3 76
YE3-225S-4 37kw 69.8 1480rpm 93.9 0.86 239 2 7.4 2.3 78
YE3-225M-4 45kw 84.5 1480rpm 94.2 0.86 290 2 7.4 2.3 78
YE3-250M-4 55kw 103.1 1485rpm 94.6 0.86 354 2 7.4 2.3 79
YE3-280S-4 75kw 139.7 1490rpm 95 0.88 481 2 6.7 2.3 80
YE3-280M-4 90kw 166.9 1485rpm 95.2 0.88 577 2 6.9 2.3 80

SYNCHRONOUS OUTPUT SPEED=1000RPM     FREQUENCY=50HZ  VOLTAGE=380V

MODEL

POWER 

(KW)

CURRENT 

(A)

SPEED 

(RPM)

EFF

POWER 

FACTOR

RATED 

TORQUE

TST IST TMAX

NOISE 

dB(A)

YE3-71M1-6 0.18kw 0.76 850rpm 54.6 0.66 2.02 1.9 4 2 52
YE3-71M2-6 0.25kw 0.97 850rpm 57.4 0.68 2.81 1.9 4 2 52
YE3-80M1-6 0.37kw 1.2 890rpm 68 0.7 3.88 1.9 5.5 2.1 54
YE3-80M2-6 0.55kw 1.7 890rpm 72 0.71 5.68 1.9 5.8 2.1 54
YE3-90S-6 0.75kw 2.2 910rpm 78.9 0.71 7.58 2 6 2.1 57
YE3-90L-6 1.1kw 3.8 910rpm 81 0.73 11.1 2 6 2.1 57
YE3-100L-6 1.5kw 3.8 940rpm 82.5 0.73 15.1 2 6.5 2.1 61
YE3-112M-6 2.2kw 5.4 940rpm 84.3 0.74 21.8 2 6.6 2.1 65
YE3-132S-6 3kw 7.4 960rpm 85.6 0.74 29.4 1.9 6.8 2.1 69
YE3-132M1-6 4kw 9.6 960rpm 86.8 0.74 39.2 1.9 6.8 2.1 69
YE3-132M2-6 5.5kw 12.9 960rpm 88 0.75 53.9 2 7 2.1 69
YE3-160M-6 7.5kw 17 970rpm 89.1 0.79 73.1 2.1 7 2.1 70
YE3-160L-6 11kw 24.2 970rpm 90.3 0.8 107 2.1 7.2 2.1 70
YE3-180L-6 15kw 31.6 970rpm 91.2 0.81 146 2 7.3 2.1 73
YE3-200L1-6 18.5kw 38.1 970rpm 91.7 0.81 179 2.1 7.3 2.1 73
YE3-200L2-6 22kw 44.5 970rpm 92.2 0.81 213 2.1 7.4 2.1 73
YE3-225M-6 30kw 58.6 980rpm 92.9 0.83 291 2 6.9 2.1 74
YE3-250M-6 37kw 71 980rpm 93.3 0.84 359 2.1 7.1 2.1 76
YE3-280S-6 45kw 85.9 980rpm 93.7 0.85 434 2.1 7.3 2.1 78
YE3-280M-6 55kw 104.7 980rpm 94.1 0.86 531 2.1 7.3 2.1 78

 SYNCHRONOUS OUTPUT SPEED=750RPM      FREQUENCY=50HZ  VOLTAGE=380V

MODEL

POWER 

(KW)

CURRENT 

(A)

SPEED 

(RPM)

EFF

POWER 

FACTOR

RATED 

TORQUE

TST IST TMAX

NOISE 

dB(A)

YE3-801-8 0.18kw 0.81 630rpm 56 0.61 2.5 1.8 3.3 1.9 52
YE3-802-8 0.25kw 1.1 640rpm 59 0.61 3.4 1.8 3.3 1.9 52
YE3-90S-8 0.37kw 1.4 660rpm 66 0.61 5.1 1.8 4 1.9 56
YE3-90L-8 0.55kw 2.1 660rpm 70 0.61 7.6 1.8 4 2 56
YE3-100L1-8 0.75kw 2.4 690rpm 73.5 0.67 10.2 1.8 4 2 59
YE3-100L2-8 1.1kw 3.4 690rpm 76.5 0.69 14.9 1.8 5 2 59
YE3-112M-8 1.5kw 4.4 680rpm 77.5 0.7 20 1.8 5 2 61
YE3-132S-8 2.2kw 6 710rpm 80 0.71 28.8 1.8 6 2 64
YE3-132M-8 3kw 7.9 710rpm 82.5 0.73 39.2 1.8 6 2 64
YE3-160M1-8 4kw 10.2 720rpm 85 0.73 52.7 1.9 6 2 68
YE3-160M2-8 5.5kw 13.6 720rpm 86 0.74 82.4 1.9 6 2 68
YE3-160L-8 7.5kw 17.8 720rpm 87.5 0.75 98.1 1.9 6 2 68
YE3-180L-8 11kw 25.2 730rpm 89 0.75 145 2 6.5 2 70
YE3-200L-8 15kw 34 730rpm 90.4 0.76 196 2 6.6 2 73
YE3-225S-8 18.5kw 40.5 740rpm 91.2 0.76 240 1.9 6.6 2 73
YE3-225M-8 22kw 47.3 740rpm 91.5 0.78 286 1.9 6.6 2 73
YE3-250M-8 30kw 63.4 740rpm 92.2 0.79 390 1.9 6.5 2 75
YE3-280S-8 37kw 76.8 740rpm 93 0.79 478 1.9 6.6 2

FAQ 

Q1: What about the shipping methods?

1): For urgent order and light weight, you can choose the following express: UPS, FedEx, TNT, DHL, EMS.

 For heavy weight, you can choose to deliver the goods by air or by sea to save cost.
 

Q2: What about the payment methods?

A2: We accept T/T, L/C for big amount, and for small amount, you can pay us by PayPal, Western Union etc.
 

Q3: How much does it cost to ship to my country?

A3: It depends on seasons. Fee is different in different seasons. You can consult us at all times.
 

Q4: What’s your delivery time?

A4: Usually we produce within 25-30days after the payment came.
 

Q5: Can I print our logo/code/series number on your motor?

A5: Yes, of course.
 

Q6: Can I order some sample for our testing?

A6: Yes, but it needs some expenses.
 

Q7: Can you customize my product in special requirement?

A7: Yes, we can offer OEM.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Closed Type
Number of Poles: 2.4.6.8.10.12
Customization:
Available

|

induction motor

Are there environmental considerations associated with the use of AC motors?

Yes, there are several environmental considerations associated with the use of AC motors. These considerations are primarily related to energy consumption, greenhouse gas emissions, and the disposal of motors at the end of their life cycle. Let’s explore these environmental considerations in detail:

  • Energy Efficiency: AC motors can have varying levels of energy efficiency, which directly impacts their environmental impact. Motors with higher efficiency convert a larger percentage of electrical energy into useful mechanical work, resulting in reduced energy consumption. By selecting and using high-efficiency AC motors, energy usage can be minimized, leading to lower greenhouse gas emissions and reduced reliance on fossil fuels for electricity generation.
  • Greenhouse Gas Emissions: The electricity consumed by AC motors is often produced by power plants that burn fossil fuels, such as coal, natural gas, or oil. The generation of electricity from these fossil fuels releases greenhouse gases, contributing to climate change. By employing energy-efficient motors and optimizing motor systems, businesses and individuals can reduce their electricity demand, leading to lower greenhouse gas emissions and a smaller carbon footprint.
  • Motor Disposal and Recycling: AC motors contain various materials, including metals, plastics, and electrical components. At the end of their life cycle, proper disposal or recycling is important to minimize their environmental impact. Some components, such as copper windings and steel casings, can be recycled, reducing the need for new raw materials and energy-intensive manufacturing processes. It is crucial to follow local regulations and guidelines for the disposal and recycling of motors to prevent environmental pollution and promote resource conservation.
  • Manufacturing and Production: The manufacturing and production processes associated with AC motors can have environmental implications. The extraction and processing of raw materials, such as metals and plastics, can result in habitat destruction, energy consumption, and greenhouse gas emissions. Additionally, the manufacturing processes themselves can generate waste and pollutants. Motor manufacturers can mitigate these environmental impacts by adopting sustainable practices, using recycled materials, reducing waste generation, and implementing energy-efficient production methods.
  • Life Cycle Assessment: Conducting a life cycle assessment (LCA) of AC motors can provide a holistic view of their environmental impact. An LCA considers the environmental aspects associated with the entire life cycle of the motor, including raw material extraction, manufacturing, transportation, use, and end-of-life disposal or recycling. By analyzing the different stages of the motor’s life cycle, stakeholders can identify opportunities for improvement, such as optimizing energy efficiency, reducing emissions, and implementing sustainable practices.

To address these environmental considerations, governments, organizations, and industry standards bodies have developed regulations and guidelines to promote energy efficiency and reduce the environmental impact of AC motors. These include efficiency standards, labeling programs, and incentives for the use of high-efficiency motors. Additionally, initiatives promoting motor system optimization, such as proper motor sizing, maintenance, and control, can further enhance energy efficiency and minimize environmental impact.

In summary, the environmental considerations associated with the use of AC motors include energy efficiency, greenhouse gas emissions, motor disposal and recycling, manufacturing processes, and life cycle assessment. By prioritizing energy efficiency, proper disposal, recycling, and sustainable manufacturing practices, the environmental impact of AC motors can be minimized, contributing to a more sustainable and environmentally conscious approach to motor usage.

induction motor

What are the common signs of AC motor failure, and how can they be addressed?

AC motor failure can lead to disruptions in various industrial and commercial applications. Recognizing the common signs of motor failure is crucial for timely intervention and preventing further damage. Here are some typical signs of AC motor failure and potential ways to address them:

  • Excessive Heat: Excessive heat is a common indicator of motor failure. If a motor feels excessively hot to the touch or emits a burning smell, it could signify issues such as overloaded windings, poor ventilation, or bearing problems. To address this, first, ensure that the motor is properly sized for the application. Check for obstructions around the motor that may be impeding airflow and causing overheating. Clean or replace dirty or clogged ventilation systems. If the issue persists, consult a qualified technician to inspect the motor windings and bearings and make any necessary repairs or replacements.
  • Abnormal Noise or Vibration: Unusual noises or vibrations coming from an AC motor can indicate various problems. Excessive noise may be caused by loose or damaged components, misaligned shafts, or worn bearings. Excessive vibration can result from imbalanced rotors, misalignment, or worn-out motor parts. Addressing these issues involves inspecting and adjusting motor components, ensuring proper alignment, and replacing damaged or worn-out parts. Regular maintenance, including lubrication of bearings, can help prevent excessive noise and vibration and extend the motor’s lifespan.
  • Intermittent Operation: Intermittent motor operation, where the motor starts and stops unexpectedly or fails to start consistently, can be a sign of motor failure. This can be caused by issues such as faulty wiring connections, damaged or worn motor brushes, or problems with the motor’s control circuitry. Check for loose or damaged wiring connections and make any necessary repairs. Inspect and replace worn or damaged motor brushes. If the motor still exhibits intermittent operation, it may require professional troubleshooting and repair by a qualified technician.
  • Overheating or Tripping of Circuit Breakers: If an AC motor consistently causes circuit breakers to trip or if it repeatedly overheats, it indicates a problem that needs attention. Possible causes include high starting currents, excessive loads, or insulation breakdown. Verify that the motor is not overloaded and that the load is within the motor’s rated capacity. Check the motor’s insulation resistance to ensure it is within acceptable limits. If these measures do not resolve the issue, consult a professional to assess the motor and its electrical connections for any faults or insulation breakdown that may require repair or replacement.
  • Decreased Performance or Efficiency: A decline in motor performance or efficiency can be an indication of impending failure. This may manifest as reduced speed, decreased torque, increased energy consumption, or inadequate power output. Factors contributing to decreased performance can include worn bearings, damaged windings, or deteriorated insulation. Regular maintenance, including lubrication and cleaning, can help prevent these issues. If performance continues to decline, consult a qualified technician to inspect the motor and perform any necessary repairs or replacements.
  • Inoperative Motor: If an AC motor fails to operate entirely, there may be an issue with the power supply, control circuitry, or internal motor components. Check the power supply and connections for any faults or interruptions. Inspect control circuitry, such as motor starters or contactors, for any damage or malfunction. If no external faults are found, it may be necessary to dismantle the motor and inspect internal components, such as windings or brushes, for any faults or failures that require repair or replacement.

It’s important to note that motor failure causes can vary depending on factors such as motor type, operating conditions, and maintenance practices. Regular motor maintenance, including inspections, lubrication, and cleaning, is essential for early detection of potential failure signs and for addressing issues promptly. When in doubt, it is advisable to consult a qualified electrician, motor technician, or manufacturer’s guidelines for appropriate troubleshooting and repair procedures specific to the motor model and application.

induction motor

How does the speed control mechanism work in AC motors?

The speed control mechanism in AC motors varies depending on the type of motor. Here, we will discuss the speed control methods used in two common types of AC motors: induction motors and synchronous motors.

Speed Control in Induction Motors:

Induction motors are typically designed to operate at a constant speed determined by the frequency of the AC power supply and the number of motor poles. However, there are several methods for controlling the speed of induction motors:

  1. Varying the Frequency: By varying the frequency of the AC power supply, the speed of an induction motor can be adjusted. This method is known as variable frequency drive (VFD) control. VFDs convert the incoming AC power supply into a variable frequency and voltage output, allowing precise control of motor speed. This method is commonly used in industrial applications where speed control is crucial, such as conveyors, pumps, and fans.
  2. Changing the Number of Stator Poles: The speed of an induction motor is inversely proportional to the number of stator poles. By changing the connections of the stator windings or using a motor with a different pole configuration, the speed can be adjusted. However, this method is less commonly used and is typically employed in specialized applications.
  3. Adding External Resistance: In some cases, external resistance can be added to the rotor circuit of an induction motor to control its speed. This method, known as rotor resistance control, involves inserting resistors in series with the rotor windings. By varying the resistance, the rotor current and torque can be adjusted, resulting in speed control. However, this method is less efficient and is mainly used in specific applications where precise control is not required.

Speed Control in Synchronous Motors:

Synchronous motors offer more precise speed control compared to induction motors due to their inherent synchronous operation. The following methods are commonly used for speed control in synchronous motors:

  1. Adjusting the AC Power Frequency: Similar to induction motors, changing the frequency of the AC power supply can control the speed of synchronous motors. By adjusting the power frequency, the synchronous speed of the motor can be altered. This method is often used in applications where precise speed control is required, such as industrial machinery and processes.
  2. Using a Variable Frequency Drive: Variable frequency drives (VFDs) can also be used to control the speed of synchronous motors. By converting the incoming AC power supply into a variable frequency and voltage output, VFDs can adjust the motor speed with high accuracy and efficiency.
  3. DC Field Control: In some synchronous motors, the rotor field is supplied by a direct current (DC) source, allowing for precise control over the motor’s speed. By adjusting the DC field current, the magnetic field strength and speed of the motor can be controlled. This method is commonly used in applications that require fine-tuned speed control, such as industrial processes and high-performance machinery.

These methods provide different ways to control the speed of AC motors, allowing for flexibility and adaptability in various applications. The choice of speed control mechanism depends on factors such as the motor type, desired speed range, accuracy requirements, efficiency considerations, and cost constraints.

China Custom High Effciency and High Voltage AC Asynchronous Squirrel Cage Induction Electric Motor for Water Pump, Air Compreesor, Gear Reducer Fan Blower (Y2/YE3 Series)   vacuum pump engine	China Custom High Effciency and High Voltage AC Asynchronous Squirrel Cage Induction Electric Motor for Water Pump, Air Compreesor, Gear Reducer Fan Blower (Y2/YE3 Series)   vacuum pump engine
editor by CX 2024-03-30

China supplier CE 0.12kw-315kw Y2 Series Three Phase Asynchronous Electric Motor AC Motor Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower vacuum pump adapter

Product Description

We,GOGOGO Mechanical&Electrical Co.,Ltd specialize in high quality energy-efficient electric motors. The combination of the best available materials, high quality sheet metal and the right amount of copper in the rotor/stator makes GOGOGO’s electric motors highly energy-efficient.

We design our electric motors to fit and match our customer’s requirements at our production site. The electric motors can be supplemented with a range of options and accessories or modified with a special design to endure any environment.
 

Electric motors account for a large part of the electricity used. If we look at the world, electric motors account for about 65 percent of the electricity used in industry. To reduce this use of electricity, there are legal requirements regarding the efficiency of electric motors manufactured in the EU, or exported into the EU.

Three-phase, single-speed asynchronous motors are covered by the requirements today. Asynchronous motors are the most common type of motor and account for 90 percent of the electricity consumption of all electric motors in the power range 0.75 – 375 kW.

According to that standard, the energy efficiency classes have the designations IE1, IE2, IE3 and IE4, where IE4 has the highest efficiency.

 

Revision of the standard

A revision of the standard was decided by the Ecodesign Committee in 2019. The revision was published on October 1, 2019. The following will apply:

For electric motors

From July 1, 2571

2-, 4-, 6- and 8-pole motors from 0.75 – 1000 kW (previously up to 375kW) are included in efficiency class IE3.

Motors within the range 0.12 – 0.75 kW must meet efficiency class IE2.

The previous possibility to replace IE3 motors with an IE2 motor with frequency drive disappears.

From July 1, 2571

For 2-, 4-, 6- and 8-pole motors from 0.12 – 1000 kW, the efficiency class IE2 now also applies to Ex eb certified motors with high safety.

Single phase motors with greater power than 0.12 kW are covered by the corresponding IE2 class.

The higher efficiency class IE4 applies to 2, 4 and 6-pole motors between 75 – 200 kW.

For frequency inverters

From July 1, 2571

For use with electric motors with power from 0.12 – 1000 kW, the frequency inverter must pass efficiency class IE2 specially designed for inverters.

Current requirements according to the Directive

Since 16 June, 2011 it is prohibited to place electric motors below energy efficiency class IE2 on the market, or to put them into service in the EU.

Since January 1, 2015, electric motors within the range 7.5 – 375 kW (2-, 4-, and 6-pole) must meet the requirements for IE3, or IE2 if the latter is combined with frequency inverters for speed control. The legal requirement thus provides 2 options.

From January 1, 2017, the requirements were tightened so that all motors 0.75 – 375 kW (2-, 4-, and 6-pole) must meet the requirements for IE3, or IE2 if they are combined with frequency inverters.

Exemptions from the current directive

  • Operation other than S1 (continuous drive) or S3 (intermittent drive) with a nominal cyclicity factor of 80 percent or lower.
  • Made for assembly with frequency inverters (integral motors).
  • Electric motors made for use in liquid.
  • Electric motors that are fully integrated into a product (e.g. a gear, pump, fan or compressor) where the energy performance is not tested independently of the product.
  • Brake motors

Electric motors intended for operation exclusively:

  • At altitudes exceeding 4 000 CHINAMFG above sea level.
  • If ambient air temperatures exceed 60°C.
  • Where maximum operating temperature exceeds 400°C.
  • Where ambient air temperatures are less than -30°C for all motors, or less than 0°C for motors with water cooling.
  • In explosive atmospheres (as defined in Directive 94/9 / EC 9)

The requirements do not apply to ships or other means of transport that carry goods or persons, since there must be specially designed engines for this purpose. (If the same mobile conveyor belt is used on ships as well as on land, the rules apply).

Also, the requirements do not apply to repair of motors previously placed on the market, or put into service – unless the repair is so extensive that the product will in practice be brand new.

If the motor is to be further exported for use outside Europe, the requirements do not apply.

Some other requirements apply to water-cooled motors

We have our own design and development team, we can provide customers with standard AC electric motors, We can also customize the single phase/three phase motors according to the special needs of customers.    Currently our main motor products cover 3 – phase high – efficiency motors,general 3 – phase motors, single phase motors, etc.
The main motor ranges: IE3 / YE3, IE2 / YE2, IE1 / Y2, Y, YS, MS, YC, YL, YY, MC, MY, ML motors.
 American standard NEMA motors
Russian standard GOST ANP motors
ZheJiang type AEEF motors,YC motors

Why choose us?
Guarantee of our motors:18-24months
General elivery time:15-30days
Price of motors: Most reasonable during your all suppliers
Packing:Strong export cartons/wooden case/plywood cases/pallets
Payment way with your order: T/T,LC,DP,etc

Sample order: Acceptable
Shipment way: Sea ship,Air flight,Express way,Land transfer way.

If you are looking for new better supplier or purchase electric motors, please feel free contact us now.You will get all what you want.

Application: Industrial, Universal, Household Appliances, Power Tools
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

induction motor

Can AC motors be used in both residential and commercial settings?

Yes, AC motors can be used in both residential and commercial settings. The versatility and wide range of applications of AC motors make them suitable for various environments and purposes.

In residential settings, AC motors are commonly found in household appliances such as refrigerators, air conditioners, washing machines, fans, and pumps. These motors are designed to meet the specific requirements of residential applications, providing reliable and efficient operation for everyday tasks. For example, air conditioners utilize AC motors to drive the compressor and fan, while washing machines use AC motors for agitating and spinning the drum.

In commercial settings, AC motors are extensively used in a wide range of applications across different industries. They power machinery, equipment, and systems that are crucial for commercial operations. Some common examples include:

  • Industrial machinery and manufacturing equipment: AC motors drive conveyor belts, pumps, compressors, mixers, fans, blowers, and other machinery used in manufacturing, production, and processing facilities.
  • HVAC systems: AC motors are used in commercial heating, ventilation, and air conditioning (HVAC) systems to drive fans, blowers, and pumps for air circulation, cooling, and heating.
  • Commercial refrigeration: AC motors are utilized in commercial refrigeration systems for powering compressors, condenser fans, and evaporator fans in supermarkets, restaurants, and cold storage facilities.
  • Office equipment: AC motors are present in various office equipment such as printers, photocopiers, scanners, and ventilation systems, ensuring their proper functioning.
  • Transportation: AC motors are used in electric vehicles, trams, trains, and other forms of electric transportation systems, providing the necessary propulsion.
  • Water and wastewater treatment: AC motors power pumps, mixers, and blowers in water treatment plants, wastewater treatment plants, and pumping stations.

The adaptability, efficiency, and controllability of AC motors make them suitable for a wide range of residential and commercial applications. Whether it’s powering household appliances or driving industrial machinery, AC motors play a vital role in meeting the diverse needs of both residential and commercial settings.

induction motor

Can AC motors be used in renewable energy systems, such as wind turbines?

Yes, AC motors can be used in renewable energy systems, including wind turbines. In fact, AC motors are commonly employed in various applications within wind turbines due to their numerous advantages. Here’s a detailed explanation:

1. Generator: In a wind turbine system, the AC motor often functions as a generator. As the wind turbine blades rotate, they drive the rotor of the generator, which converts the mechanical energy of the wind into electrical energy. AC generators are commonly used in wind turbines due to their efficiency, reliability, and compatibility with power grid systems.

2. Variable Speed Control: AC motors offer the advantage of variable speed control, which is crucial for wind turbines. The wind speed is variable, and in order to maximize energy capture, the rotor speed needs to be adjusted accordingly. AC motors, when used as generators, can adjust their rotational speed with the changing wind conditions by modifying the frequency and voltage of the output electrical signal.

3. Efficiency: AC motors are known for their high efficiency, which is an important factor in renewable energy systems. Wind turbines aim to convert as much of the wind energy into electrical energy as possible. AC motors, especially those designed for high efficiency, can help maximize the overall energy conversion efficiency of the wind turbine system.

4. Grid Integration: AC motors are well-suited for grid integration in renewable energy systems. The electrical output from the AC generator can be easily synchronized with the grid frequency and voltage, allowing for seamless integration of the wind turbine system with the existing power grid infrastructure. This facilitates the efficient distribution of the generated electricity to consumers.

5. Control and Monitoring: AC motors offer advanced control and monitoring capabilities, which are essential for wind turbine systems. The electrical parameters, such as voltage, frequency, and power output, can be easily monitored and controlled in AC motor-based generators. This allows for real-time monitoring of the wind turbine performance, fault detection, and optimization of the power generation process.

6. Availability and Standardization: AC motors are widely available in various sizes and power ratings, making them readily accessible for wind turbine applications. They are also well-standardized, ensuring compatibility with other system components and facilitating maintenance, repair, and replacement activities.

It’s worth noting that while AC motors are commonly used in wind turbines, there are other types of generators and motor technologies utilized in specific wind turbine designs, such as permanent magnet synchronous generators (PMSGs) or doubly-fed induction generators (DFIGs). These alternatives offer their own advantages and may be preferred in certain wind turbine configurations.

In summary, AC motors can indeed be used in renewable energy systems, including wind turbines. Their efficiency, variable speed control, grid integration capabilities, and advanced control features make them a suitable choice for converting wind energy into electrical energy in a reliable and efficient manner.

induction motor

How does the speed control mechanism work in AC motors?

The speed control mechanism in AC motors varies depending on the type of motor. Here, we will discuss the speed control methods used in two common types of AC motors: induction motors and synchronous motors.

Speed Control in Induction Motors:

Induction motors are typically designed to operate at a constant speed determined by the frequency of the AC power supply and the number of motor poles. However, there are several methods for controlling the speed of induction motors:

  1. Varying the Frequency: By varying the frequency of the AC power supply, the speed of an induction motor can be adjusted. This method is known as variable frequency drive (VFD) control. VFDs convert the incoming AC power supply into a variable frequency and voltage output, allowing precise control of motor speed. This method is commonly used in industrial applications where speed control is crucial, such as conveyors, pumps, and fans.
  2. Changing the Number of Stator Poles: The speed of an induction motor is inversely proportional to the number of stator poles. By changing the connections of the stator windings or using a motor with a different pole configuration, the speed can be adjusted. However, this method is less commonly used and is typically employed in specialized applications.
  3. Adding External Resistance: In some cases, external resistance can be added to the rotor circuit of an induction motor to control its speed. This method, known as rotor resistance control, involves inserting resistors in series with the rotor windings. By varying the resistance, the rotor current and torque can be adjusted, resulting in speed control. However, this method is less efficient and is mainly used in specific applications where precise control is not required.

Speed Control in Synchronous Motors:

Synchronous motors offer more precise speed control compared to induction motors due to their inherent synchronous operation. The following methods are commonly used for speed control in synchronous motors:

  1. Adjusting the AC Power Frequency: Similar to induction motors, changing the frequency of the AC power supply can control the speed of synchronous motors. By adjusting the power frequency, the synchronous speed of the motor can be altered. This method is often used in applications where precise speed control is required, such as industrial machinery and processes.
  2. Using a Variable Frequency Drive: Variable frequency drives (VFDs) can also be used to control the speed of synchronous motors. By converting the incoming AC power supply into a variable frequency and voltage output, VFDs can adjust the motor speed with high accuracy and efficiency.
  3. DC Field Control: In some synchronous motors, the rotor field is supplied by a direct current (DC) source, allowing for precise control over the motor’s speed. By adjusting the DC field current, the magnetic field strength and speed of the motor can be controlled. This method is commonly used in applications that require fine-tuned speed control, such as industrial processes and high-performance machinery.

These methods provide different ways to control the speed of AC motors, allowing for flexibility and adaptability in various applications. The choice of speed control mechanism depends on factors such as the motor type, desired speed range, accuracy requirements, efficiency considerations, and cost constraints.

China supplier CE 0.12kw-315kw Y2 Series Three Phase Asynchronous Electric Motor AC Motor Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower   vacuum pump adapter	China supplier CE 0.12kw-315kw Y2 Series Three Phase Asynchronous Electric Motor AC Motor Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower   vacuum pump adapter
editor by CX 2023-12-04

China wholesaler Three Phase Asynchronous AC Induction Electric Gear Reducer Fan Blower Vacuum Air Compressor Water Pump Universal Industry Machine Motor vacuum pump design

Product Description

Production Description

YE2 Series Cast of Iron Three Phase Induction Motor is specially designed for European market, whose terminal box is located on
the top of motor.They are totally enclosed and fan-cooling designed. They are newly designed in conformity with the relevant
requirements / rules of IEC&DIN42673 standards.
 

Type
 
YE2 
Power
 
0.75~315kw
Insulation
 
F / B, H/B
Voltage and frequency
 
380/400/415/660/690V  50/60hz
Speed
 
3000/1500/1000/750/600 rpm
Mounitng
 
IMB3/IMV1
Cooling and ventilation
 
TEFC in accordance with IC411 of IEC60034-6.
Winding
 
100% Cooper Wire
Protection class
 
IP54/IP55
Vibration
 
vibration class A, vibration class B is available on request.
Quality assurance
 
ISO9001
Site conditions
 
 from -15°C t0 +40°C and altitude below 1000 meters

Products Application, Value Added Service

PinnxunMotor can provide a complete set of optimal solutions for various Applications,Bring innovation and valueadded to our 
customers, At the same time, we can also formulate special solutions according to the different needed of customer 

Product  Process
 
Pinnxun always take good faith, responsibility, carefulness and CHINAMFG as our management philosophy, committedto providing
customers with superior quality products,every step in processs must be take full attention.

Qualification certification system

The key for ‘Pinxing’ long-terms cooperation is to continuously improve the quality of is products and service, By virtue of is
comprehensive process, quality management system and strict compliance with international mainstream standards.’Pinxing’
has established a quality management system that has passed ISO9001-2008 Quality management system certification

ISO14001 Environmental management system.
ISO9001-2008 Quality management system
ISO14001 Environmental management system
CE European Certification
IECEX CHINAMFG Ex Certification for Ex motors
ATEX European Ex Certification for Ex motors
EAC Russia GOST standard Ex certification for Ex motors
CQC China quality center energy conservation certification

Worldwide Marketing & Service Network 

Global Perfect Marketing service network is 1 of Pinxing’s advantage. we have 38 branches in china main city,5 branches in
the Abroad ,Our business penetrates more than 60 countries and regions including South America, North America,Europe, Asia
Middle East and Africa, Giving us rapid reach capacity from sales, service, procurement and Transportation since inception, Pinxing
always uphold the development strategy of market globalization. we segment and position customers needs and target market. our
products and service are widely used in global industry, and performance stable and safety.we custom different motors for different
industries

 

Application: Industrial,Universal,Power Tool
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 2/4/6/8/10/12 Pole
Customization:
Available

|

induction motor

What factors should be considered when selecting an AC motor for a particular application?

When selecting an AC motor for a particular application, several factors need to be considered to ensure the motor meets the requirements and performs optimally. Here are the key factors to consider:

  1. Power Requirements: Determine the power requirements of the application, including the required torque and speed. The motor should have adequate power output to meet the demands of the specific task. Consider factors such as starting torque, running torque, and speed range to ensure the motor can handle the load effectively.
  2. Motor Type: There are different types of AC motors, including induction motors, synchronous motors, and brushless DC motors. Each type has its own characteristics and advantages. Consider the application’s requirements and factors such as speed control, efficiency, and starting torque to determine the most suitable motor type.
  3. Environmental Conditions: Assess the environmental conditions in which the motor will operate. Factors such as temperature, humidity, dust, and vibration levels can impact motor performance and longevity. Choose a motor that is designed to withstand the specific environmental conditions of the application.
  4. Size and Space Constraints: Consider the available space for motor installation. Ensure that the physical dimensions of the motor, including its length, diameter, and mounting arrangement, are compatible with the available space. Additionally, consider the weight of the motor if it needs to be mounted or transported.
  5. Efficiency: Energy efficiency is an important consideration, as it can impact operational costs and environmental sustainability. Look for motors with high efficiency ratings, which indicate that they convert electrical energy into mechanical energy with minimal energy loss. Energy-efficient motors can lead to cost savings and reduced environmental impact over the motor’s lifespan.
  6. Control and Speed Requirements: Determine if the application requires precise speed control or if a fixed speed motor is sufficient. If variable speed control is needed, consider motors that can be easily controlled using variable frequency drives (VFDs) or other speed control mechanisms. For applications that require high-speed operation, select a motor that can achieve the desired speed range.
  7. Maintenance and Serviceability: Assess the maintenance requirements and serviceability of the motor. Consider factors such as the accessibility of motor components, ease of maintenance, availability of spare parts, and the manufacturer’s reputation for reliability and customer support. A motor that is easy to maintain and service can help minimize downtime and repair costs.
  8. Budget: Consider the budget constraints for the motor selection. Balance the desired features and performance with the available budget. In some cases, investing in a higher quality, more efficient motor upfront can lead to long-term cost savings due to reduced energy consumption and maintenance requirements.

By carefully considering these factors, it is possible to select an AC motor that aligns with the specific requirements of the application, ensuring optimal performance, efficiency, and reliability.

induction motor

Can AC motors be used in renewable energy systems, such as wind turbines?

Yes, AC motors can be used in renewable energy systems, including wind turbines. In fact, AC motors are commonly employed in various applications within wind turbines due to their numerous advantages. Here’s a detailed explanation:

1. Generator: In a wind turbine system, the AC motor often functions as a generator. As the wind turbine blades rotate, they drive the rotor of the generator, which converts the mechanical energy of the wind into electrical energy. AC generators are commonly used in wind turbines due to their efficiency, reliability, and compatibility with power grid systems.

2. Variable Speed Control: AC motors offer the advantage of variable speed control, which is crucial for wind turbines. The wind speed is variable, and in order to maximize energy capture, the rotor speed needs to be adjusted accordingly. AC motors, when used as generators, can adjust their rotational speed with the changing wind conditions by modifying the frequency and voltage of the output electrical signal.

3. Efficiency: AC motors are known for their high efficiency, which is an important factor in renewable energy systems. Wind turbines aim to convert as much of the wind energy into electrical energy as possible. AC motors, especially those designed for high efficiency, can help maximize the overall energy conversion efficiency of the wind turbine system.

4. Grid Integration: AC motors are well-suited for grid integration in renewable energy systems. The electrical output from the AC generator can be easily synchronized with the grid frequency and voltage, allowing for seamless integration of the wind turbine system with the existing power grid infrastructure. This facilitates the efficient distribution of the generated electricity to consumers.

5. Control and Monitoring: AC motors offer advanced control and monitoring capabilities, which are essential for wind turbine systems. The electrical parameters, such as voltage, frequency, and power output, can be easily monitored and controlled in AC motor-based generators. This allows for real-time monitoring of the wind turbine performance, fault detection, and optimization of the power generation process.

6. Availability and Standardization: AC motors are widely available in various sizes and power ratings, making them readily accessible for wind turbine applications. They are also well-standardized, ensuring compatibility with other system components and facilitating maintenance, repair, and replacement activities.

It’s worth noting that while AC motors are commonly used in wind turbines, there are other types of generators and motor technologies utilized in specific wind turbine designs, such as permanent magnet synchronous generators (PMSGs) or doubly-fed induction generators (DFIGs). These alternatives offer their own advantages and may be preferred in certain wind turbine configurations.

In summary, AC motors can indeed be used in renewable energy systems, including wind turbines. Their efficiency, variable speed control, grid integration capabilities, and advanced control features make them a suitable choice for converting wind energy into electrical energy in a reliable and efficient manner.

induction motor

What is an AC motor, and how does it differ from a DC motor?

An AC motor, also known as an alternating current motor, is a type of electric motor that operates on alternating current. It converts electrical energy into mechanical energy through the interaction of magnetic fields. AC motors are widely used in various applications, ranging from household appliances to industrial machinery. Here’s a detailed explanation of what an AC motor is and how it differs from a DC motor:

AC Motor:

An AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. These windings are typically made of copper wire and are arranged in specific configurations to create a rotating magnetic field when energized by an alternating current. The rotor, on the other hand, is the rotating part of the motor and is typically made of laminated steel cores with conducting bars or coils. The rotor windings are connected to a shaft, and their interaction with the rotating magnetic field produced by the stator causes the rotor to rotate.

The operation of an AC motor is based on the principles of electromagnetic induction. When the stator windings are energized with an AC power supply, the changing magnetic field induces a voltage in the rotor windings, which in turn creates a magnetic field. The interaction between the rotating magnetic field of the stator and the magnetic field of the rotor produces a torque, causing the rotor to rotate. The speed of rotation depends on the frequency of the AC power supply and the number of poles in the motor.

DC Motor:

A DC motor, also known as a direct current motor, operates on direct current. Unlike an AC motor, which relies on the interaction of magnetic fields to generate torque, a DC motor uses the principle of commutation to produce rotational motion. A DC motor consists of a stator and a rotor, similar to an AC motor. The stator contains the stator windings, while the rotor consists of a rotating armature with coils or permanent magnets.

In a DC motor, when a direct current is applied to the stator windings, a magnetic field is created. The rotor, either through the use of brushes and a commutator or electronic commutation, aligns itself with the magnetic field and begins to rotate. The direction of the current in the rotor windings is continuously reversed to ensure continuous rotation. The speed of a DC motor can be controlled by adjusting the voltage applied to the motor or by using electronic speed control methods.

Differences:

The main differences between AC motors and DC motors are as follows:

  • Power Source: AC motors operate on alternating current, which is the standard power supply in most residential and commercial buildings. DC motors, on the other hand, require direct current and typically require a power supply that converts AC to DC.
  • Construction: AC motors and DC motors have similar construction with stators and rotors, but the design and arrangement of the windings differ. AC motors generally have three-phase windings, while DC motors can have either armature windings or permanent magnets.
  • Speed Control: AC motors typically operate at fixed speeds determined by the frequency of the power supply and the number of poles. DC motors, on the other hand, offer more flexibility in speed control and can be easily adjusted over a wide range of speeds.
  • Efficiency: AC motors are generally more efficient than DC motors. AC motors can achieve higher power densities and are often more suitable for high-power applications. DC motors, however, offer better speed control and are commonly used in applications that require precise speed regulation.
  • Applications: AC motors are widely used in applications such as industrial machinery, HVAC systems, pumps, and compressors. DC motors find applications in robotics, electric vehicles, computer disk drives, and small appliances.

In conclusion, AC motors and DC motors differ in their power source, construction, speed control, efficiency, and applications. AC motors rely on the interaction of magnetic fields and operate on alternating current, while DC motors use commutation and operate on direct current. Each type of motor has its advantages and is suited for different applications based on factors such as power requirements, speed control needs, and efficiency considerations.

China wholesaler Three Phase Asynchronous AC Induction Electric Gear Reducer Fan Blower Vacuum Air Compressor Water Pump Universal Industry Machine Motor   vacuum pump design		China wholesaler Three Phase Asynchronous AC Induction Electric Gear Reducer Fan Blower Vacuum Air Compressor Water Pump Universal Industry Machine Motor   vacuum pump design
editor by CX 2023-11-16

China wholesaler Water Pump Machine 110V 220V AC Universal Motor Single-Phase Motor supplier

Product Description

BG 44 AC Motor 
Environmental Conditions -20ºC~50ºC
Insulation Clase B-H
Protection class IP44
Noise ≤75dB
Number of phases Single 
Current AC&DC
Lifespan 1000h

Electrical Specifications
Model RATED LOAD NO LOAD   STALL
 Voltage    Power  

  Speed  

 Torque    Current   Speed    Current   Torque   Current 
V W rpm N.m A rpm A   N.m   A  
  BG AC54-1 110 35 10000 0.033 0.5 17000 0.08 0.1 1.5
BG AC54-2 110 20 11000 0.017 0.28 18000 0.03  0.055 0.85
BG AC54-3 220 30 12000 0.571 0.2 20000 0.03 0.07 0.6
We can also customize products according to customer requirements.  

Established in 1994, HangZhou BG Motor Factory is a professional manufacturer of brushless DC motors, brushed DC motors, planetary gear motors, worm gear motors, Universal motors and AC motors. We have a plant area of 6000 square meters, multiple patent certificates, and we have the independent design and development capabilities and strong technical force, with an annual output of more than 1 million units. Since the beginning of its establishment, BG motor has focused on the overall solution of motors. We manufacture and design motors, provide professional customized services, respond quickly to customer needs, and actively help customers to solve problems. Our motor products are exported to 20 countries, including the United States, Germany, Italy, the United Kingdom, Poland, Slovenia, Switzerland, Sweden, Singapore, South Korea etc.
Our founder, Mr. Sun, has more than 40 years of experience in motor technology, and our other engineers also have more than 15 years of experience, and 60% of our staff have more than 10 years of experience, and we can assure you that the quality of our motors is top notch.
The products cover AGV, underwater robots, robots, sewing machine industry, automobiles, medical equipment, automatic doors, lifting equipment, industrial equipment and have a wide range of applications.
We strive for CHINAMFG in the quality of each product, and we are only a small and sophisticated manufacturer.
Our vision: Drive the world CHINAMFG and make life better!

Q:1.What kind of motors can you provide?

A:At present, we mainly produce brushless DC motors, brush DC motors, AC motors, Universal Motors; the power of the motor is less than 5000W, and the diameter of the motor is not more than 200mm;

Q:2.Can you send me a price list?

A:For all of our motors, they are customized based on different requirements like lifetime, noise,voltage,and shaft etc. The price also varies according to annual quantity. So it’s really difficult for us to provide a price list. If you can share your detailed requirements and annual quantity, we’ll see what offer we can provide.

Q:3.Can l get some samples?

A:It depends. If only a few samples for personal use or replacement, I am afraid it’ll be difficult for us to provide because all of our motors are custom made and no stock available if there are no further needs. If just sample testing before the official order and our MOQ,price and other terms are acceptable,we’d love to provide samples.

Q4:Can you provide OEM or ODM service?

A:Yes,OEM and ODM are both available, we have the professional R&D dept which can provide professional solutions for you.

Q5:Can l visit your factory before we place an order?

A:welcome to visit our factory,we are very pleased if we have the chance to know each other more.

Q:6.What’s the lead time for a regular order?

A:For orders, the standard lead time is 15-20 days and this time can be shorter or longer based on the different model,period and quantity.

Application: Universal
Speed: 8000rpm-12000rpm
Number of Stator: Single-Phase
Function: Driving
Casing Protection: Closed Type
Number of Poles: 2
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

Are there specific maintenance requirements for AC motors to ensure optimal performance?

Yes, AC motors have specific maintenance requirements to ensure their optimal performance and longevity. Regular maintenance helps prevent unexpected failures, maximizes efficiency, and extends the lifespan of the motor. Here are some key maintenance practices for AC motors:

  1. Cleaning and Inspection: Regularly clean the motor to remove dust, dirt, and debris that can accumulate on the motor surfaces and hinder heat dissipation. Inspect the motor for any signs of damage, loose connections, or abnormal noise/vibration. Address any issues promptly to prevent further damage.
  2. Lubrication: Check the motor’s lubrication requirements and ensure proper lubrication of bearings, gears, and other moving parts. Insufficient or excessive lubrication can lead to increased friction, overheating, and premature wear. Follow the manufacturer’s guidelines for lubrication intervals and use the recommended lubricants.
  3. Belt and Pulley Maintenance: If the motor is coupled with a belt and pulley system, regularly inspect and adjust the tension of the belts. Improper belt tension can affect motor performance and efficiency. Replace worn-out belts and damaged pulleys as needed.
  4. Cooling System Maintenance: AC motors often have cooling systems such as fans or heat sinks to dissipate heat generated during operation. Ensure that these cooling systems are clean and functioning properly. Remove any obstructions that may impede airflow and compromise cooling efficiency.
  5. Electrical Connections: Regularly inspect the motor’s electrical connections for signs of loose or corroded terminals. Loose connections can lead to voltage drops, increased resistance, and overheating. Tighten or replace any damaged connections and ensure proper grounding.
  6. Vibration Analysis: Periodically perform vibration analysis on the motor to detect any abnormal vibrations. Excessive vibration can indicate misalignment, unbalanced rotors, or worn-out bearings. Address the underlying causes of vibration to prevent further damage and ensure smooth operation.
  7. Motor Testing: Conduct regular motor testing, such as insulation resistance testing and winding resistance measurement, to assess the motor’s electrical condition. These tests can identify insulation breakdown, winding faults, or other electrical issues that may affect motor performance and reliability.
  8. Professional Maintenance: For more complex maintenance tasks or when dealing with large industrial motors, it is advisable to involve professional technicians or motor specialists. They have the expertise and tools to perform in-depth inspections, repairs, and preventive maintenance procedures.

It’s important to note that specific maintenance requirements may vary depending on the motor type, size, and application. Always refer to the manufacturer’s guidelines and recommendations for the particular AC motor in use. By following proper maintenance practices, AC motors can operate optimally, minimize downtime, and have an extended service life.

induction motor

Are there energy-saving technologies or features available in modern AC motors?

Yes, modern AC motors often incorporate various energy-saving technologies and features designed to improve their efficiency and reduce power consumption. These advancements aim to minimize energy losses and optimize motor performance. Here are some energy-saving technologies and features commonly found in modern AC motors:

  • High-Efficiency Designs: Modern AC motors are often designed with higher efficiency standards compared to older models. These motors are built using advanced materials and optimized designs to reduce energy losses, such as resistive losses in motor windings and mechanical losses due to friction and drag. High-efficiency motors can achieve energy savings by converting a higher percentage of electrical input power into useful mechanical work.
  • Premium Efficiency Standards: International standards and regulations, such as the NEMA Premium® and IE (International Efficiency) classifications, define minimum energy efficiency requirements for AC motors. Premium efficiency motors meet or exceed these standards, offering improved efficiency compared to standard motors. These motors often incorporate design enhancements, such as improved core materials, reduced winding resistance, and optimized ventilation systems, to achieve higher efficiency levels.
  • Variable Frequency Drives (VFDs): VFDs, also known as adjustable speed drives or inverters, are control devices that allow AC motors to operate at variable speeds by adjusting the frequency and voltage of the electrical power supplied to the motor. By matching the motor speed to the load requirements, VFDs can significantly reduce energy consumption. VFDs are particularly effective in applications where the motor operates at a partial load for extended periods, such as HVAC systems, pumps, and fans.
  • Efficient Motor Control Algorithms: Modern motor control algorithms, implemented in motor drives or control systems, optimize motor operation for improved energy efficiency. These algorithms dynamically adjust motor parameters, such as voltage, frequency, and current, based on load conditions, thereby minimizing energy wastage. Advanced control techniques, such as sensorless vector control or field-oriented control, enhance motor performance and efficiency by precisely regulating the motor’s magnetic field.
  • Improved Cooling and Ventilation: Effective cooling and ventilation are crucial for maintaining motor efficiency. Modern AC motors often feature enhanced cooling systems, including improved fan designs, better airflow management, and optimized ventilation paths. Efficient cooling helps prevent motor overheating and reduces losses due to heat dissipation. Some motors also incorporate thermal monitoring and protection mechanisms to avoid excessive temperatures and ensure optimal operating conditions.
  • Bearings and Friction Reduction: Friction losses in bearings and mechanical components can consume significant amounts of energy in AC motors. Modern motors employ advanced bearing technologies, such as sealed or lubrication-free bearings, to reduce friction and minimize energy losses. Additionally, optimized rotor and stator designs, along with improved manufacturing techniques, help reduce mechanical losses and enhance motor efficiency.
  • Power Factor Correction: Power factor is a measure of how effectively electrical power is being utilized. AC motors with poor power factor can contribute to increased reactive power consumption and lower overall power system efficiency. Power factor correction techniques, such as capacitor banks or power factor correction controllers, are often employed to improve power factor and minimize reactive power losses, resulting in more efficient motor operation.

By incorporating these energy-saving technologies and features, modern AC motors can achieve significant improvements in energy efficiency, leading to reduced power consumption and lower operating costs. When considering the use of AC motors, it is advisable to select models that meet or exceed recognized efficiency standards and consult manufacturers or experts to ensure the motor’s compatibility with specific applications and energy-saving requirements.

induction motor

What are the key advantages of using AC motors in industrial applications?

AC motors offer several key advantages that make them highly suitable for industrial applications. Here are some of the main advantages:

  1. Simple and Robust Design: AC motors, particularly induction motors, have a simple and robust design, making them reliable and easy to maintain. They consist of fewer moving parts compared to other types of motors, which reduces the likelihood of mechanical failure and the need for frequent maintenance.
  2. Wide Range of Power Ratings: AC motors are available in a wide range of power ratings, from small fractional horsepower motors to large industrial motors with several megawatts of power. This versatility allows for their application in various industrial processes and machinery, catering to different power requirements.
  3. High Efficiency: AC motors, especially modern designs, offer high levels of efficiency. They convert electrical energy into mechanical energy with minimal energy loss, resulting in cost savings and reduced environmental impact. High efficiency also means less heat generation, contributing to the longevity and reliability of the motor.
  4. Cost-Effectiveness: AC motors are generally cost-effective compared to other types of motors. Their simple construction and widespread use contribute to economies of scale, making them more affordable for industrial applications. Additionally, AC motors often have lower installation and maintenance costs due to their robust design and ease of operation.
  5. Flexible Speed Control: AC motors, particularly induction motors, offer various methods for speed control, allowing for precise adjustment of motor speed to meet specific industrial requirements. Speed control mechanisms such as variable frequency drives (VFDs) enable enhanced process control, energy savings, and improved productivity.
  6. Compatibility with AC Power Grid: AC motors are compatible with the standard AC power grid, which is widely available in industrial settings. This compatibility simplifies the motor installation process and eliminates the need for additional power conversion equipment, reducing complexity and cost.
  7. Adaptability to Various Environments: AC motors are designed to operate reliably in a wide range of environments. They can withstand variations in temperature, humidity, and dust levels commonly encountered in industrial settings. Additionally, AC motors can be equipped with protective enclosures to provide additional resistance to harsh conditions.

These advantages make AC motors a popular choice for industrial applications across various industries. Their simplicity, reliability, cost-effectiveness, energy efficiency, and speed control capabilities contribute to improved productivity, reduced operational costs, and enhanced process control in industrial settings.

China wholesaler Water Pump Machine 110V 220V AC Universal Motor Single-Phase Motor   supplier China wholesaler Water Pump Machine 110V 220V AC Universal Motor Single-Phase Motor   supplier
editor by CX 2023-10-23

China High quality 2.2kw 1450rpm YE2 series 100L1-4 three phase electric ac water pump motor electric motor motor driver

Warranty: 3 months
Model Number: Y Low-Speed Synchronous Motor
Type: Asynchronous Motor, motor
Frequency: 2930r/min
Phase: Three-phase, 3 phase
Protect Feature: Explosion-proof
AC Voltage: 460 / 480 V
Efficiency: IE 1
Item: Low-Speed Synchronous Motor
Size: custom made
Certification: CE. ISO9

My name : Jin Yang

Create brand products, to be pioneer of the industry. Our aim is to satisfy the customers!

Low-Speed Synchronous Motor Low-Speed Synchronous Motor Low-Speed Synchronous Motor Low-Speed Synchronous Motor Low-Speed Synchronous Motor Low-Speed Synchronous Motor Low-Speed Synchronous Motor Low-Speed Synchronous Motor

The Basics of a Planetary Motor

A Planetary Motor is a type of gearmotor that uses multiple planetary gears to deliver torque. This system minimizes the chances of failure of individual gears and increases output capacity. Compared to the planetary motor, the spur gear motor is less complex and less expensive. However, a spur gear motor is generally more suitable for applications requiring low torque. This is because each gear is responsible for the entire load, limiting its torque.

Self-centering planetary gears

This self-centering mechanism for a planetary motor is based on a helical arrangement. The helical structure involves a sun-planet, with its crown and slope modified. The gears are mounted on a ring and share the load evenly. The helical arrangement can be either self-centering or self-resonant. This method is suited for both applications.
A helical planetary gear transmission is illustrated in FIG. 1. A helical configuration includes an output shaft 18 and a sun gear 18. The drive shaft extends through an opening in the cover to engage drive pins on the planet carriers. The drive shaft of the planetary gears can be fixed to the helical arrangement or can be removable. The transmission system is symmetrical, allowing the output shaft of the planetary motor to rotate radially in response to the forces acting on the planet gears.
A flexible pin can improve load sharing. This modification may decrease the face load distribution, but increases the (K_Hbeta) parameter. This effect affects the gear rating and life. It is important to understand the effects of flexible pins. It is worth noting that there are several other disadvantages of flexible pins in helical PGSs. The benefits of flexible pins are discussed below.
Using self-centering planetary gears for a helical planetary motor is essential for symmetrical force distribution. These gears ensure the symmetry of force distribution. They can also be used for self-centering applications. Self-centering planetary gears also guarantee the proper force distribution. They are used to drive a planetary motor. The gearhead is made of a ring gear, and the output shaft is supported by two ball bearings. Self-centering planetary gears can handle a high torque input, and can be suited for many applications.
To solve for a planetary gear mechanism, you need to find its pitch curve. The first step is to find the radius of the internal gear ring. A noncircular planetary gear mechanism should be able to satisfy constraints that can be complex and nonlinear. Using a computer, you can solve for these constraints by analyzing the profile of the planetary wheel’s tooth curve.
Motor

High torque

Compared to the conventional planetary motors, high-torque planetary motors have a higher output torque and better transmission efficiency. The high-torque planetary motors are designed to withstand large loads and are used in many types of applications, such as medical equipment and miniature consumer electronics. Their compact design makes them suitable for small space-saving applications. In addition, these motors are designed for high-speed operation.
They come with a variety of shaft configurations and have a wide range of price-performance ratios. The FAULHABER planetary gearboxes are made of plastic, resulting in a good price-performance ratio. In addition, plastic input stage gears are used in applications requiring high torques, and steel input stage gears are available for higher speeds. For difficult operating conditions, modified lubrication is available.
Various planetary gear motors are available in different sizes and power levels. Generally, planetary gear motors are made of steel, brass, or plastic, though some use plastic for their gears. Steel-cut gears are the most durable, and are ideal for applications that require a high amount of torque. Similarly, nickel-steel gears are more lubricated and can withstand a high amount of wear.
The output torque of a high-torque planetary gearbox depends on its rated input speed. Industrial-grade high-torque planetary gearboxes are capable of up to 18000 RPM. Their output torque is not higher than 2000 nm. They are also used in machines where a planet is decelerating. Their working temperature ranges between 25 and 100 degrees Celsius. For best results, it is best to choose the right size for the application.
A high-torque planetary gearbox is the most suitable type of high-torque planetary motor. It is important to determine the deceleration ratio before buying one. If there is no product catalog that matches your servo motor, consider buying a close-fitting high-torque planetary gearbox. There are also high-torque planetary gearboxes available for custom-made applications.
Motor

High efficiency

A planetary gearbox is a type of mechanical device that is used for high-torque transmission. This gearbox is made of multiple pairs of gears. Large gears on the output shaft mesh with small gears on the input shaft. The ratio between the big and small gear teeth determines the transmittable torque. High-efficiency planetary gearheads are available for linear motion, axial loads, and sterilizable applications.
The AG2400 high-end gear unit series is ideally matched to Beckhoff’s extensive line of servomotors and gearboxes. Its single-stage and multi-stage transmission ratios are highly flexible and can be matched to different robot types. Its modified lubrication helps it operate in difficult operating conditions. These high-performance gear units are available in a wide range of sizes.
A planetary gear motor can be made of steel, nickel-steel, or brass. In addition to steel, some models use plastic. The planetary gears share work between multiple gears, making it easy to transfer high amounts of power without putting a lot of stress on the gears. The gears in a planetary gear motor are held together by a movable arm. High-efficiency planetary gear motors are more efficient than traditional gearmotors.
While a planetary gear motor can generate torque, it is more efficient and cheaper to produce. The planetary gear system is designed with all gears operating in synchrony, minimizing the chance of a single gear failure. The efficiency of a planetary gearmotor makes it a popular choice for high-torque applications. This type of motor is suitable for many applications, and is less expensive than a standard geared motor.
The planetary gearbox is a combination of a planetary type gearbox and a DC motor. The planetary gearbox is compact, versatile, and efficient, and can be used in a wide range of industrial environments. The planetary gearbox with an HN210 DC motor is used in a 22mm OD, PPH, and ph configuration with voltage operating between 6V and 24V. It is available in many configurations and can be custom-made to meet your application requirements.
Motor

High cost

In general, planetary gearmotors are more expensive than other configurations of gearmotors. This is due to the complexity of their design, which involves the use of a central sun gear and a set of planetary gears which mesh with each other. The entire assembly is enclosed in a larger internal tooth gear. However, planetary motors are more effective for higher load requirements. The cost of planetary motors varies depending on the number of gears and the number of planetary gears in the system.
If you want to build a planetary gearbox, you can purchase a gearbox for the motor. These gearboxes are often available with several ratios, and you can use any one to create a custom ratio. The cost of a gearbox depends on how much power you want to move with the gearbox, and how much gear ratio you need. You can even contact your local FRC team to purchase a gearbox for the motor.
Gearboxes play a major role in determining the efficiency of a planetary gearmotor. The output shafts used for this type of motor are usually made of steel or nickel-steel, while those used in planetary gearboxes are made from brass or plastic. The former is the most durable and is best for applications that require high torque. The latter, however, is more absorbent and is better at holding lubricant.
Using a planetary gearbox will allow you to reduce the input power required for the stepper motor. However, this is not without its downsides. A planetary gearbox can also be replaced with a spare part. A planetary gearbox is inexpensive, and its spare parts are inexpensive. A planetary gearbox has low cost compared to a planetary motor. Its advantages make it more desirable in certain applications.
Another advantage of a planetary gear unit is the ability to handle ultra-low speeds. Using a planetary gearbox allows stepper motors to avoid resonance zones, which can cause them to crawl. In addition, the planetary gear unit allows for safe and efficient cleaning. So, whether you’re considering a planetary gear unit for a particular application, these gear units can help you get exactly what you need.

China High quality 2.2kw 1450rpm YE2 series 100L1-4 three phase electric ac water pump motor electric motor     motor driver	China High quality 2.2kw 1450rpm YE2 series 100L1-4 three phase electric ac water pump motor electric motor     motor driver
editor by czh

in Lubango Angola sales price shop near me near me shop factory supplier Squirrel Cage AC Water Pump Motor Price manufacturer best Cost Custom Cheap wholesaler

  in Lubango Angola  sales   price   shop   near me   near me shop   factory   supplier Squirrel Cage AC Water Pump Motor Price manufacturer   best   Cost   Custom   Cheap   wholesaler

Much more importantly, we make unique areas according to supplied drawings/samples and warmly welcome OEM inquiries. guarantees the balance and consistency of the crucial function of components. we provide a single-stop resolution for the acquire of mechanical energy transmission goods in China.

Voltage 380V or personalize enter voltage
Frequency 50HZ or 60HZ,variable frequency
Protection IP55 or customise
Insulation a hundred and fifty five (F) or customise
Mounting EPT3 EPT5 EPT35 V1 or personalize
Relative Humidity le90% or customize
altitude le 1000m or customize
Cooling Strategy IC411
EPTearing brand NSK or personalize
stator steel type silicon metal WW350 WW470 WW600
stator coiling copper QZ-two/155 QZY-two/180
fame materials casting iron or AL ALLOY,STANINLESS Steel
rotor conductor AL(ninety nine.7%),copper or customise 36

Our Significant merchandise:
IE2 IE3 collection IEC stXiHu (West Lake) Dis.Hu (West Lake) Dis.rd (IEC60034-thirty) and GEPT (18613-2012) Three section Asynchronous Motor
and ZD collection Conical Rotor Motors.
Set up Mounting stXiHu (West Lake) Dis.Hu (West Lake) Dis.rd IEC 60072-1
EPT3 EPT5 EPT35 V1 V3 V5 V6 EPT6 EPT7 EPT8 V15 V36 EPT14 EPT34 V18

Our Company:JAT Electric powered (ZheJiang ) Co., Ltd. (JAT Electrical for short) was estabEPTd in 2017 with a registered capital of RMEPT fifty million EPT. The organization addresses an region of 72,000 square meters, the eXiHu (West Lake) Dis.sting developing spot is forty,000 square meters, and the once-a-year production potential of motor is 4 million kw.
We are a motor producer positioned in HangZhou town,ZheJiang priovince, EPT(in close proximity to ZheJiang and nanEPTg metropolis)

Our manufacturing scene:
one. motor frame and endshield (endcap) casting

two.Good machining of casted iron motor body, bearing caps,endshield

three.stator assembly workshop

4. stator dipping and completed stator shorage

five. Fantastic machining of electrical motor’s rotor
6. cleansing EPT for motor spare components

seven. AC motor assembly line ( we have 6 assembly lines in total for 3-section asynchronous motor)
8. Different exams for electric motors prior to package deal

nine. tailored EPT components in accordance to customers’ necessity
9. certificates and tests reviews accessible for our motors, such as CE,

WHY Select US?
one. we Focus in production A few Phase Asynchronous Motors (.75kw-315kw)
and Conical rotor motor for crane and hoist.
2.Our factory use to 6S administration
3. we have one particular-to-1 service for our consumers. (one income and 1 income assistant and one technician for one specific customer)
4. quickly responding to any feasible customers’ grievance reXiHu (West Lake) Dis.Hu (West Lake) Dis.ding merchandise top quality , delivery, etc)
5. a two years EPT guarantee for our motors
six. Aggressive costs (based mostly on our outstanding good quality stXiHu (West Lake) Dis.Hu (West Lake) Dis.rd, our motor rates are good price for money)
for much more data (such as complex knowledge of our motors,or requesting for a sample for trial running on your
products) please write to us.

Thanks for your time.one

  in Lubango Angola  sales   price   shop   near me   near me shop   factory   supplier Squirrel Cage AC Water Pump Motor Price manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Lubango Angola  sales   price   shop   near me   near me shop   factory   supplier Squirrel Cage AC Water Pump Motor Price manufacturer   best   Cost   Custom   Cheap   wholesaler

in Yazd Iran (Islamic Republic of) sales price shop near me near me shop factory supplier 0.06kw~15kw Three-Phase AC Induction Motor for Water Pump manufacturer best Cost Custom Cheap wholesaler

  in Yazd Iran (Islamic Republic of)  sales   price   shop   near me   near me shop   factory   supplier 0.06kw~15kw Three-Phase AC Induction Motor for Water Pump manufacturer   best   Cost   Custom   Cheap   wholesaler

Hangzhou EPG Co.,Ltd. , was established in November, 1997. With its 5 wholly owned subsidiaries. Complete use has been manufactured of all varieties of innovative methods and technologies to attain excelsior production. we source chromed bar and tubes for hydualic and pheumatic cylinders. .06kw~15kw 3-phase AC induction motor for water pump

Merchandise Description

EPT .06-500kw
Frame Size fifty six-four hundred
Performance Class IE1-IE4
Poles 2, four, 6, 8 poles
Safety Class IP44, IP54, IP55, IP56
Insulation Course EPT, F, H
Mounting Type EPT14, EPT3, EPT5, EPT35, EPT34
Ambient Temperature -fifteen~ 40 degC
Altitude le1000M
Material Aluminum/Solid Iron

EPT ampShipping

Business Introduction

Greensky EPT Firm Limited is a EPT-primarily based worldwide organization who is EPTized in electric powered motor, EPT and controlling technique deveXiHu (West Lake) Dis.Hu (West Lake) Dis.ing, manufacturing, top quality managing and trading.

Mission:
We are committed to deveXiHu (West Lake) Dis.Hu (West Lake) Dis. an international electric motor firm that can supply a single-end dependable products with customer-oriEPTd support.

History:
Greensky was estabEPTd in 2571 by York Cheng in Los Angeles, United states of america and moved to HangZhou, EPT in 2011. In the previous eight many years, the staff of Greensky carries on to create the benefit to our esteemed consumers all above the globe by constructing up extensive and trustworthy provide chain administration technique, efficient quality amp shipping and delivery time handle program, expense efficiency manufacturing system and fast-react professional services.

Location: EPTinEPTng district, HangZhou, EPT
EPTinEPTng is a substantial-tech zone which is the cEPTr of oversea EPT expertise entrepreneurs. Some famous neighbours incEPT Alibaba, Netease and Geely company.

EPTackground:
Greensky is a subsidiary of EagleEye Money Restricted who has three manufacturing EPTs and 1 sales office with far more than 500 staff and general two hundred million product sales.

Certifications

EPT

FAQ

one Q: What’s your MOQ for motor?
A: 1unit is alright for sample tests

two Q: What about your warranty for your motor?
A: One yr.

three Q: Do you give OEM service with client-logo?
A: Sure, we could do OEM orders, but we largely emphasis on our personal model.

four Q: How about your payment terms?
A: TT, western union and PayPal. 100% payment EPT for orders considerably less $five,000. 30% deposit and harmony ahead of shipping for
orders in excess of $5,000.

5 Q: How about your EPT?
A: Carton, Plywood situation. If you need much more, we can pack all goods with pallet

6 Q: What data must be provided, if I get a motor from you?
A: Rated EPT, EPT ratio, enter speed, mounting situation. A lot more information, better!

seven Q: How do you supply the motors?
A: We will evaluate and decide on the most appropriate waEPTof supply by sea, air or specific courier.

We hope you will enEPT cooperating with us.

  in Yazd Iran (Islamic Republic of)  sales   price   shop   near me   near me shop   factory   supplier 0.06kw~15kw Three-Phase AC Induction Motor for Water Pump manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Yazd Iran (Islamic Republic of)  sales   price   shop   near me   near me shop   factory   supplier 0.06kw~15kw Three-Phase AC Induction Motor for Water Pump manufacturer   best   Cost   Custom   Cheap   wholesaler