China OEM IEC/Ye Three Phase Industry High Efficiency AC Asynchronous Induction Electric Motor vacuum pump engine

Product Description

Motor model YE3 series three-phase asynchronous motor
texture of material aluminum shell
Installation method B5
power 1HP-10HP
Applicable scope Three-phase asynchronous motor aluminum shell vertical can be applied to various mechanical equipment such as water pumps, lathes, oil pumps, mixers, etc.

Who are we?
HangZhou Su Lin Mechanical & Electrical Co., Ltd.  is located in Xihu (West Lake) Dis. Industrial Park, Daxi Town, HangZhou, ZHangZhoug province. Adjacent to Xihu (West Lake) Dis.wen high-speed G15, China National Highway 104, 18 km from the HangZhou Xihu (West Lake) Dis. Airport, 2 km from the railway station, the traffic is very convenient. Is a set design, production, sales, service integration of the new enterprise. Has many years of production YY series fan, JY, Ye2, YC, YL, YCL, YS Experience, has a perfect motor automatic computer testing line, Advanced Manufacturing, assembly line, specializing in the production of Dinyi brand series motor products. Products through the national compulsory product CCC certification, Export European Union CE safety certification

The company produces a complete range of motors, a variety of varieties, advanced design, well-chosen materials, advanced technology and unique, with excellent performance and the use of safe, reliable, durable and other advantages, products sell well throughout the country and exported to all world countries , customers at home and abroad to the praise. The company regards human resources as the basis of development of the enterprise, attention to customer needs, customer service, to build the industry brand. With our strong human capital and continuous innovation, we can create a comfortable and quiet environment for maintaining the CHINAMFG health of human beings. The company adheres to the “quality first, customer first” principle to provide customers with quality service, welcome new and old customers to visit, guidance and business negotiations.

Power parameters

TYPE POWER(KW) SPEED(r/min) Rated Current(A) η(%) Power Factor cos Ist/In Tst/Tn Tmax/Tn
YE3-80M1-4 0.55 1390 1.57 71 0.75 5.2 2.4 2.3
YE3-80M2-4 0.75 1390 1.88 82.5 0.76 6 2.3 2.3
YE3-90S-4 1.1 1400 2.67 84.1 0.77 6 2.3 2.3
YE3-90L-4 1.5 1400 3.48 85.3 0.79 6 2.3 2.3
YE3-100L-4 2.2 1430 4.9 86.7 0.81 7 2.3 2.3
YE3-100L2-4 3 1430 6.5 87.7 0.82 7 2.3 2.3
YE3-112M-4 4 1440 8.56 88.6 0.82 7 2.3 2.3
YE3-132S-4 5.5 1440 11.5 89.6 0.83 7 2.3 2.3
YE3-132M-4 7.5 1440 15.3 90.4 0.84 7 2.3 2.3
YE3-80M1-2 0.75 2910 1.7 80.7 0.83 6.1 2.2 2.3
YE3-80M2-2 1.1 2910 2.4 82.7 0.84 7 2.2 2.3
YE3-90S-2 1.5 2910 3.2 84.2 0.84 7 2.2 2.3
YE3-90L-2 2.2 2910 4.73 85.9 0.85 7 2.2 2.3
YE3-100L-2 3 2910 6.19 87.1 0.87 7.5 2.2 2.3
YE3-112M-2 4 2915 8.05 88.1 0.88 7.5 2.2 2.3
YE3-132S1-2 5.5 2920 10.9 89.2 0.88 7.5 2.2 2.3
YE3-132S2-2 7.5 2920 14.7 90.1 0.88 7.5 2.2 2.3

 
Installation dimensions

Product Description

YE3 Three-phase Electric Motor are made of high-quality materials and conform to IEC standard. Which has good performance with low noise and little vibration. It is  safe and reliable in operation, and can be maintained very conveniently.

1.YE3 Series Aluminum Housing Three Phase Induction Motor adopts the latest design and high quality material and are conform to the IEC standard in function, appearance, output and other requirements.

2.The efficiency of YE3 motor meets IEC standard in E. U. YE3 motor has a lot of advantages including high efficiency, energy saving, low noise, little vibration, light weight, small volume, reliable operation, up-to-date appearance, convenient operation and maintenance.

3.YE3 motor is died cast into mounding shape by aluminum-alloy. The base foot can be removable. Various mounting types are available for YE3 motor.

4.YE3 motor is suitable for common working environment and machinery without special requirement, like air-compressor, pump, fan, medical apparatus and instruments, small machines etc.

Factory real shots

FAQ:
Q1. Do you accept OEM order?
Yes, OEM Brand aluminum electric motor asynchronous induction motor are acceptable.

Q2. What’s your payment terms?
We accept T/T(50% down payment and 50% paid before delivery), Pay pal, Western union, and Money Gram.

Q3. What’s the minimum order quantity? How long is the delivery time?
Both MOQ and delivery time need to refer to the specific products. Usuall we deliver the motors in 10-45 days, please
contact our sales for details.

Q4. What’s the way of transportation?
Express, air and CHINAMFG shipments are all available.

Q5. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery
B. With more than 15 years experience in this filed, we have the ability to provide good service and products in low cost
C. Adequate inventory to make sure that our clients can obtain goods in a short period.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

induction motor

Can you explain the concept of motor efficiency and how it relates to AC motors?

Motor efficiency is a measure of how effectively an electric motor converts electrical power into mechanical power. It represents the ratio of the motor’s useful output power (mechanical power) to the input power (electrical power) it consumes. Higher efficiency indicates that the motor converts a larger percentage of the electrical energy into useful mechanical work, while minimizing energy losses in the form of heat and other inefficiencies.

In the case of AC motors, efficiency is particularly important due to their wide usage in various applications, ranging from residential appliances to industrial machinery. AC motors can be both induction motors, which are the most common type, and synchronous motors, which operate at a constant speed synchronized with the frequency of the power supply.

The efficiency of an AC motor is influenced by several factors:

  1. Motor Design: The design of the motor, including its core materials, winding configuration, and rotor construction, affects its efficiency. Motors that are designed with low-resistance windings, high-quality magnetic materials, and optimized rotor designs tend to have higher efficiency.
  2. Motor Size: The physical size of the motor can also impact its efficiency. Larger motors generally have higher efficiency because they can dissipate heat more effectively, reducing losses. However, it’s important to select a motor size that matches the application requirements to avoid operating the motor at low efficiency due to underloading.
  3. Operating Conditions: The operating conditions, such as load demand, speed, and temperature, can influence motor efficiency. Motors are typically designed for maximum efficiency at or near their rated load. Operating the motor beyond its rated load or at very light loads can reduce efficiency. Additionally, high ambient temperatures can cause increased losses and reduced efficiency.
  4. Magnetic Losses: AC motors experience losses due to magnetic effects, such as hysteresis and eddy current losses in the core materials. These losses result in heat generation and reduce overall efficiency. Motor designs that minimize magnetic losses through the use of high-quality magnetic materials and optimized core designs can improve efficiency.
  5. Mechanical Friction and Windage Losses: Friction and windage losses in the motor’s bearings, shaft, and rotating parts also contribute to energy losses and reduced efficiency. Proper lubrication, bearing selection, and reducing unnecessary mechanical resistance can help minimize these losses.

Efficiency is an important consideration when selecting an AC motor, as it directly impacts energy consumption and operating costs. Motors with higher efficiency consume less electrical power, resulting in reduced energy bills and a smaller environmental footprint. Additionally, higher efficiency often translates to less heat generation, which can enhance the motor’s reliability and lifespan.

Regulatory bodies and standards organizations, such as the International Electrotechnical Commission (IEC) and the National Electrical Manufacturers Association (NEMA), provide efficiency classes and standards for AC motors, such as IE efficiency classes and NEMA premium efficiency standards. These standards help consumers compare the efficiency levels of different motors and make informed choices to optimize energy efficiency.

In summary, motor efficiency is a measure of how effectively an AC motor converts electrical power into mechanical power. By selecting motors with higher efficiency, users can reduce energy consumption, operating costs, and environmental impact while ensuring reliable and sustainable motor performance.

induction motor

Can AC motors be used in renewable energy systems, such as wind turbines?

Yes, AC motors can be used in renewable energy systems, including wind turbines. In fact, AC motors are commonly employed in various applications within wind turbines due to their numerous advantages. Here’s a detailed explanation:

1. Generator: In a wind turbine system, the AC motor often functions as a generator. As the wind turbine blades rotate, they drive the rotor of the generator, which converts the mechanical energy of the wind into electrical energy. AC generators are commonly used in wind turbines due to their efficiency, reliability, and compatibility with power grid systems.

2. Variable Speed Control: AC motors offer the advantage of variable speed control, which is crucial for wind turbines. The wind speed is variable, and in order to maximize energy capture, the rotor speed needs to be adjusted accordingly. AC motors, when used as generators, can adjust their rotational speed with the changing wind conditions by modifying the frequency and voltage of the output electrical signal.

3. Efficiency: AC motors are known for their high efficiency, which is an important factor in renewable energy systems. Wind turbines aim to convert as much of the wind energy into electrical energy as possible. AC motors, especially those designed for high efficiency, can help maximize the overall energy conversion efficiency of the wind turbine system.

4. Grid Integration: AC motors are well-suited for grid integration in renewable energy systems. The electrical output from the AC generator can be easily synchronized with the grid frequency and voltage, allowing for seamless integration of the wind turbine system with the existing power grid infrastructure. This facilitates the efficient distribution of the generated electricity to consumers.

5. Control and Monitoring: AC motors offer advanced control and monitoring capabilities, which are essential for wind turbine systems. The electrical parameters, such as voltage, frequency, and power output, can be easily monitored and controlled in AC motor-based generators. This allows for real-time monitoring of the wind turbine performance, fault detection, and optimization of the power generation process.

6. Availability and Standardization: AC motors are widely available in various sizes and power ratings, making them readily accessible for wind turbine applications. They are also well-standardized, ensuring compatibility with other system components and facilitating maintenance, repair, and replacement activities.

It’s worth noting that while AC motors are commonly used in wind turbines, there are other types of generators and motor technologies utilized in specific wind turbine designs, such as permanent magnet synchronous generators (PMSGs) or doubly-fed induction generators (DFIGs). These alternatives offer their own advantages and may be preferred in certain wind turbine configurations.

In summary, AC motors can indeed be used in renewable energy systems, including wind turbines. Their efficiency, variable speed control, grid integration capabilities, and advanced control features make them a suitable choice for converting wind energy into electrical energy in a reliable and efficient manner.

induction motor

Can you explain the basic working principle of an AC motor?

An AC motor operates based on the principles of electromagnetic induction. It converts electrical energy into mechanical energy through the interaction of magnetic fields. The basic working principle of an AC motor involves the following steps:

  1. The AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. The rotor is the rotating part of the motor and is connected to a shaft.
  2. When an alternating current (AC) is supplied to the stator windings, it creates a changing magnetic field.
  3. The changing magnetic field induces a voltage in the rotor windings, which are either short-circuited conductive bars or coils.
  4. The induced voltage in the rotor windings creates a magnetic field in the rotor.
  5. The magnetic field of the rotor interacts with the rotating magnetic field of the stator, resulting in a torque force.
  6. The torque force causes the rotor to rotate, transferring mechanical energy to the connected shaft.
  7. The rotation of the rotor continues as long as the AC power supply is provided to the stator windings.

This basic working principle is applicable to various types of AC motors, including induction motors and synchronous motors. However, the specific construction and design of the motor may vary depending on the type and intended application.

China OEM IEC/Ye Three Phase Industry High Efficiency AC Asynchronous Induction Electric Motor   vacuum pump engine	China OEM IEC/Ye Three Phase Industry High Efficiency AC Asynchronous Induction Electric Motor   vacuum pump engine
editor by CX 2024-04-02