Product Description
Product Description
EC MOTOR for Refrigeration is a high-performance electronically commutated motor, specifically designed for refrigeration and air conditioning systems. lt provides superior efficiency, precise control, and long-lasting reliability for demanding applications.
– Large power range:3-30W
– Large size and angle range of fan blades can be used
– Low noise, low vibration
– Low energy consumption and high efficiency
Features:
1) High Efficiency:
The EC MOTOR for Refrigeration has a brushless DC design that provides up to 70% efficiency, which is significantly higher than traditional AC motors.The motor’s integrated electronic control system continually monitors operating conditions and adjusts the motor’s speed, resulting in reduced energy consumption, lower operating costs, and longer service life.
2) Precise Control:
The motor has a smooth, continuous speed control that enables precise temperature and humidity regulation. The EC MOTOR for Refrigeration can operate at variable speeds to match system demand, making it an ideal choice forenergy-efficient systems.
3) Reduced Noise and Vibration:
The brushless DC design and electronic control systerresult in less noise and vibration compared to traditional AC motors. This makes it anexcellent choice for quiet environments
4) Compact Design:
The compact design of the EC MOTOR for Refrigeration provides a high power-to-size ratio, which makes it an ideal choice for space-constrained applications.
Specifications:
1) Voltage:
The motor operates on a range of voltages, from 100V to 240V.
2) Speed:
The motor’s speed can be controlled between 300RPM to 2300RPM depending on the application.
3) Control:
The motor features an integrated electronic control system that provides precise speed control and system monitoring.
4) Operating Temperature:
The motor can operate in a temperature range from -40°C to +50°C
Overall, the EC MOTOR for Refrigeration is a highly efficient, reliable. and precise motor designed to meet the demands of refrigeration and air conditioning applications. lts superior performance makes it an ideal choice for OEMs and system integrators looking to improve system efficiency and reliability.
As long as you are a manufacturer of super-market refrigeration equipements, or beverage cabinets, or beer coolers etc, you will be in need of our EC Brushless Motor for Fan.
Product Parameters
MDAC6115A Pro EC Brushless Motor Parameters:
MODEL | Voltage V |
Maximum load | SPEED RPM |
Minimum noise dB(A) | Minimum vibration mm/s | Maximum power W |
Maximum efficiency % |
MDAC6115A Pro | 100-240V | 230 34° | 300-2300 | 39.0 | 1.1 | 20 | 75 |
LOAD/SPEED | 200mm blade | 230mm blade | 254mm blade | 300mm blade | ||||
28° | 34° | 28° | 34° | 28° | 34° | 28° | 34° | |
1300RPM | V | V | V | V | V | V | V | V |
1500RPM | V | V | V | V | V | V | V | X |
1800RPM | V | V | V | V | X | X | X | X |
2300RPM | V | V | V | X | X | X | X | X |
Technical Parameter | |
Nominal voltage range | 220-240VAC,100-240VAC,50/60Hz |
Rotation speed range | 300- 1800 rpm |
Material | PBT |
Airflow direction | Air exhaust or airintake (depending on impeller) |
Direction of rotation | CCW(view on drive end) |
Degree of protection | IP65 |
Insulation class | “B” VD, “F” UL |
Installation position | Any |
Mode of operation | Continuous operation (S1) |
Bearings | Maintenance-free ball bearing system |
Motor protection | By electronics |
Electrical hook-up | Power cables |
Protection class | II(without grounding conductor) |
Approvals | CCC; EAC;VDE,EN 6571-2-24,EN 6571-2-89,EN 6571-1 |
Fitting of attachments | Guard grille and wall ring are attached to the projecting thread ends on the |
Mounting of axial impeller | A plastic adapter with catching peg and M4 screw is used to secure the impeller on the motor shaft |
Ambient temperature | -40ºC-50ºC |
We continuously improve and pursue products that are more energy-efficient, stable, popular, and environmentally friendly. Compared to traditional covered pole motor products, EC has obvious advantages in high-efficiency and energy-saving electrodes, specifically:
Comparison details of MDAC6115A and 25W shaded pole motors:
1) Energy Saving
It’s power consumption is around 1/3 of Shade-pole motor to meet the same function.
Such a siginificant energy saving is what your customers always wanted, considering the huge power consumption where your equiment is used for.
It’s also meeting high energy standard of North American and European market.
2) Job Saving
We have 2 models of EC Motor that are enough to cover almost all 7 models of Shade-pole motor for different refrigeration equipements, because EC Motor is designed to be speed adjustable.
– Adjustable speed saves your job of model selection for both purchaing team and technical team.
– Long life saves your job of after-sales.
– Energy sameing saves your job of explaining to your buyers.
– Wide voltage range saves your marketing policy to different markets.
Below listed the comparasion between our EC Motor and regular Shade-pole Motor:
EC Motor 6115A | Shade-Plole Motor 25W | |
Input Power | 30W | 100W |
Out Power | 20W | 25W |
Voltage | 100-240V | 110V or 220V |
Height of The Motor | 80mm +/-1 | 113mm +/-1 |
Noise | 39.5dBA | 60dBA |
Motor Life | 8~10years | 3~5years |
Bearing | Ball bearing | Sleeve bearing |
Efficient | up to 70% | Max 18% |
Speed | 300~1800rpm | 1300rpm |
Certificate | UL, VDE, CE, CCC, EX, RoHs | UL, VDE, CE, CCC, EX, RoHs |
Protect Level | IP65 | IP42 |
→Click to View More EC Motors Products!!!
Company Profile
We have our own design, research and development, testing equipment, and production line. The cost-effectiveness and after-sales service of our products are guaranteed, and we can provide technical support and customized services!
Exhibition
Certifications
With abundant technique force,we have our own researching, developing, manufacturing, inspecting and testingcenters, and imported the international advanced high-tech equipments. Our company has passed the ISO9001,ISO14001,OHS18001 international management system certificates. The products have got UL,ETL,CE,CB,and CCC certificates. Our products are not only selling strongly in more than 30 provincesand municipality,but also largely exporting to Europe,America,Australia,Middle East, Africa and South Asia. We have won an excellent reputation from the customers and friends by our product quality,price versus performance ratio and service.
FAQ
Q1: Are you a manufacturer or trader?
A1: ZHangZhoug Maidi Refrigeration Technology Co., Ltd. is a Hi-tech enterprise. We own the standard plant and office building which covering 21, 000 square meters. With abundant technique force, we have our own researching, developing, manufacturing, inspecting and testing centers, and imported the international advanced equipments.
Q2: How to replace refrigerator ec motor?
A2: We have a professional team of engineers who provide technical support and online guidance on product installation and replacement.
Q3: How do you ensure quality?
A3: We have a dedicated product research and testing center with authoritative quality management system certification: ISO9001/ISO14001/OHS18001.
Q4: How much does a refrigeration part cost?
A4: Factory price for you, not cheapest but the lowest at the same quality.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Refrigerators/Beverage Cabinets/Ice Maker, etc. |
---|---|
Speed: | Variable Speed |
Number of Stator: | Three-Phase |
Samples: |
US$ 15/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
What factors should be considered when selecting an AC motor for a particular application?
When selecting an AC motor for a particular application, several factors need to be considered to ensure the motor meets the requirements and performs optimally. Here are the key factors to consider:
- Power Requirements: Determine the power requirements of the application, including the required torque and speed. The motor should have adequate power output to meet the demands of the specific task. Consider factors such as starting torque, running torque, and speed range to ensure the motor can handle the load effectively.
- Motor Type: There are different types of AC motors, including induction motors, synchronous motors, and brushless DC motors. Each type has its own characteristics and advantages. Consider the application’s requirements and factors such as speed control, efficiency, and starting torque to determine the most suitable motor type.
- Environmental Conditions: Assess the environmental conditions in which the motor will operate. Factors such as temperature, humidity, dust, and vibration levels can impact motor performance and longevity. Choose a motor that is designed to withstand the specific environmental conditions of the application.
- Size and Space Constraints: Consider the available space for motor installation. Ensure that the physical dimensions of the motor, including its length, diameter, and mounting arrangement, are compatible with the available space. Additionally, consider the weight of the motor if it needs to be mounted or transported.
- Efficiency: Energy efficiency is an important consideration, as it can impact operational costs and environmental sustainability. Look for motors with high efficiency ratings, which indicate that they convert electrical energy into mechanical energy with minimal energy loss. Energy-efficient motors can lead to cost savings and reduced environmental impact over the motor’s lifespan.
- Control and Speed Requirements: Determine if the application requires precise speed control or if a fixed speed motor is sufficient. If variable speed control is needed, consider motors that can be easily controlled using variable frequency drives (VFDs) or other speed control mechanisms. For applications that require high-speed operation, select a motor that can achieve the desired speed range.
- Maintenance and Serviceability: Assess the maintenance requirements and serviceability of the motor. Consider factors such as the accessibility of motor components, ease of maintenance, availability of spare parts, and the manufacturer’s reputation for reliability and customer support. A motor that is easy to maintain and service can help minimize downtime and repair costs.
- Budget: Consider the budget constraints for the motor selection. Balance the desired features and performance with the available budget. In some cases, investing in a higher quality, more efficient motor upfront can lead to long-term cost savings due to reduced energy consumption and maintenance requirements.
By carefully considering these factors, it is possible to select an AC motor that aligns with the specific requirements of the application, ensuring optimal performance, efficiency, and reliability.
What are the common signs of AC motor failure, and how can they be addressed?
AC motor failure can lead to disruptions in various industrial and commercial applications. Recognizing the common signs of motor failure is crucial for timely intervention and preventing further damage. Here are some typical signs of AC motor failure and potential ways to address them:
- Excessive Heat: Excessive heat is a common indicator of motor failure. If a motor feels excessively hot to the touch or emits a burning smell, it could signify issues such as overloaded windings, poor ventilation, or bearing problems. To address this, first, ensure that the motor is properly sized for the application. Check for obstructions around the motor that may be impeding airflow and causing overheating. Clean or replace dirty or clogged ventilation systems. If the issue persists, consult a qualified technician to inspect the motor windings and bearings and make any necessary repairs or replacements.
- Abnormal Noise or Vibration: Unusual noises or vibrations coming from an AC motor can indicate various problems. Excessive noise may be caused by loose or damaged components, misaligned shafts, or worn bearings. Excessive vibration can result from imbalanced rotors, misalignment, or worn-out motor parts. Addressing these issues involves inspecting and adjusting motor components, ensuring proper alignment, and replacing damaged or worn-out parts. Regular maintenance, including lubrication of bearings, can help prevent excessive noise and vibration and extend the motor’s lifespan.
- Intermittent Operation: Intermittent motor operation, where the motor starts and stops unexpectedly or fails to start consistently, can be a sign of motor failure. This can be caused by issues such as faulty wiring connections, damaged or worn motor brushes, or problems with the motor’s control circuitry. Check for loose or damaged wiring connections and make any necessary repairs. Inspect and replace worn or damaged motor brushes. If the motor still exhibits intermittent operation, it may require professional troubleshooting and repair by a qualified technician.
- Overheating or Tripping of Circuit Breakers: If an AC motor consistently causes circuit breakers to trip or if it repeatedly overheats, it indicates a problem that needs attention. Possible causes include high starting currents, excessive loads, or insulation breakdown. Verify that the motor is not overloaded and that the load is within the motor’s rated capacity. Check the motor’s insulation resistance to ensure it is within acceptable limits. If these measures do not resolve the issue, consult a professional to assess the motor and its electrical connections for any faults or insulation breakdown that may require repair or replacement.
- Decreased Performance or Efficiency: A decline in motor performance or efficiency can be an indication of impending failure. This may manifest as reduced speed, decreased torque, increased energy consumption, or inadequate power output. Factors contributing to decreased performance can include worn bearings, damaged windings, or deteriorated insulation. Regular maintenance, including lubrication and cleaning, can help prevent these issues. If performance continues to decline, consult a qualified technician to inspect the motor and perform any necessary repairs or replacements.
- Inoperative Motor: If an AC motor fails to operate entirely, there may be an issue with the power supply, control circuitry, or internal motor components. Check the power supply and connections for any faults or interruptions. Inspect control circuitry, such as motor starters or contactors, for any damage or malfunction. If no external faults are found, it may be necessary to dismantle the motor and inspect internal components, such as windings or brushes, for any faults or failures that require repair or replacement.
It’s important to note that motor failure causes can vary depending on factors such as motor type, operating conditions, and maintenance practices. Regular motor maintenance, including inspections, lubrication, and cleaning, is essential for early detection of potential failure signs and for addressing issues promptly. When in doubt, it is advisable to consult a qualified electrician, motor technician, or manufacturer’s guidelines for appropriate troubleshooting and repair procedures specific to the motor model and application.
Can you explain the basic working principle of an AC motor?
An AC motor operates based on the principles of electromagnetic induction. It converts electrical energy into mechanical energy through the interaction of magnetic fields. The basic working principle of an AC motor involves the following steps:
- The AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. The rotor is the rotating part of the motor and is connected to a shaft.
- When an alternating current (AC) is supplied to the stator windings, it creates a changing magnetic field.
- The changing magnetic field induces a voltage in the rotor windings, which are either short-circuited conductive bars or coils.
- The induced voltage in the rotor windings creates a magnetic field in the rotor.
- The magnetic field of the rotor interacts with the rotating magnetic field of the stator, resulting in a torque force.
- The torque force causes the rotor to rotate, transferring mechanical energy to the connected shaft.
- The rotation of the rotor continues as long as the AC power supply is provided to the stator windings.
This basic working principle is applicable to various types of AC motors, including induction motors and synchronous motors. However, the specific construction and design of the motor may vary depending on the type and intended application.
editor by CX 2024-05-16