Tag Archives: ac motors

China manufacturer Ie4 Electric AC Motor for Forklift Sewing Coil Winding Machine Rice Mill Three Phase Asynchronous Electric Motors vacuum pump brakes

Product Description

 

3HMI-IE3 Series Cast-Iron Housing Premium Efficiency Motor Characteristics and advantages:
Frame Size: H80-355
Poles: 2, 4, 6poles
Rated Power: 0.75KW-315KW
Rated Voltage: 220/380V, 380/660V, 230/400V, 400V/690V
Frequency: 50HZ, 60HZ
Protection Class: IP44, IP54, IP55, IP56
Insulation Class: B, F, H
Mounting Type:B3, B5, B35 multi and pad mounting
Ambient Temperature: -20~+40 °C
Altitude: ≤1000M
 
3HMI-IE3 Series Technical Data

Type (kW) η(%) Cosφ r/min Rated current(A) Ts/Tn   Is/In
380 400 415
3HMI 80M1-2 0.75 80.7 0.83 2880 1.70 1.62 1.56 2.2 2.3 7
3HMI 80M2-2 1.1 82.7 0.84 2880 2.41 2.29 2.20 7.9
3HMI 90S-2 1.5 84.2 0.84 2895 3.22 3.06 2.95
3HMI 90L-2 2.2 85.9 0.85 2985 4.58 4.35 4.19
3HMI 100L-2 3 87.1 0.87 2895 6.02 5.71 5.51 8.1
3HMI 112M-2 4 81.5 0.87 2905 8.57 8.14 7.85
3HMI 132S1-2 5.5 89.2 0.88 2930 10.65 10.11 9.75
3HMI 132S2-2 7.5 90.1 0.88 2930 14.37 13.65 13.16
3HMI 160M1-2 11 91.2 0.89 2945 20.59 19.56 18.85
3HMI 160M2-2 15 91.9 0.89 2945 27.86 26.47 25.51
3HMI 160L-2 18.5 92.4 0.90 2955 33.80 32.11 30.95
3HMI 180M-2 22 92.7 0.90 2955 40.07 38.06 36.69 2
3HMI 200L1-2 30 93.3 0.90 2960 54.28 51.57 49.71
3HMI 200L2-2 37 93.7 0.90 2960 66.66 63.33 61.04
3HMI 225M-2 45 94 0.90 2965 80.82 76.78 74.00
3HMI 250M-2 55 94.3 0.90 2970 98.46 93.54 90.16
3HMI 280S-2 75 94.7 0.90 2975 133.70 127.02 122.43
3HMI 280M-2 90 95 0.91 2975 158.18 150.27 144.84
3HMI 315S-2 110 95.2 0.91 2978 192.92 183.28 176.65 1.8 2.2 7.7
3HMI 315M-2 132 95.4 0.91 2978 231.02 219.47 211.54
3HMI 315L1-2 160 95.6 0.92 2980 276.40 262.58 253.09
3HMI 315L2-2 200 95.8 0.92 2980 344.78 327.54 315.70
3HMI 355M-2 250 95.8 0.92 2982 430.98 409.43 394.63 1.6
3HMI 355L-2 315 95.8 0.92 2982 543.03 515.88 497.23
3HMI 802-4 0.75 82.5 0.76 1420 1.82 1.73 1.66 2.3 2.3 6.5
3HMI 90S-4 1.1 84.1 0.77 1445 2.58 2.45 2.36
3HMI 90L-4 1.5 85.3 0.79 1445 3.38 3.21 3.10
3HMI 100L1-4 2.2 86.7 0.81 1435 4.76 4.52 4.36 7.5
3HMI 100L2-4 3 87.7 0.82 1435 6.34 6.02 5.80
3HMI 112M-4 4 88.6 0.82 1440 8.37 7.95 7.66
3HMI 132S-4 5.5 89.6 0.83 1460 11.24 10.68 10.29
3HMI 132M-4 7.5 90.4 0.84 1460 15.01 14.26 13.74
3HMI 160M-4 11 91.4 0.84 1465 21.77 20.68 19.93 2.2 8.9
3HMI 160L-4 15 92.1 0.85 1465 29.11 27.66 26.66
3HMI 180M-4 18.5 92.6 0.86 1470 35.30 33.53 32.32 7.9
3HMI 180L-4 22 93 0.86 1470 41.79 39.70 38.27
3HMI 200L-4 30 93.6 0.86 1475 56.63 53.79 51.85
3HMI 225S-4 37 93.9 0.87 1485 68.82 65.37 63.01
3HMI 225M-4 45 94.2 0.87 1485 83.43 79.26 76.39
3HMI 250M-4 55 94.6 0.87 1485 101.54 96.46 92.97
3HMI 280S-4 75 95 0.87 1486 137.88 130.98 126.25
3HMI 280M-4 90 95.2 0.87 1486 165.10 156.85 151.18
3HMI 315S-4 110 95.4 0.88 1488 199.08 189.13 182.29 2.1 2.2 7.6
3HMI 315M-4 132 95.6 0.88 1488 238.40 226.48 218.29
3HMI 315L1-4 160 95.8 0.89 1488 285.12 270.87 261.08
3HMI 315L2-4 200 96 0.89 1490 355.66 337.88 325.67
3HMI 355M-4 250 96.0 0.90 1490 439.64 417.66 402.56
3HMI 355L-4 315 96.0 0.90 1490 553.94 526.25 507.23
3HMI 90S-6 0.75 78.9 0.72 935 2.01 1.91 1.84
3HMI 90L-6 1.1 81 0.73 945 2.83 2.69 2.59
3HMI 100L-6 1.5 82.5 0.75 949 3.68 3.50 3.37
3HMI 112M-6 2.2 84.3 0.76 955 5.22 4.96 4.78
3HMI 132S-6 3 85.6 0.76 968 7.01 6.66 6.42
3HMI 132M1-6 4 86.8 0.76 968 9.21 8.75 8.44
3HMI 132M2-6 5.5 88 0.77 968 12.33 11.72 11.29
3HMI 160M-6 7.5 89.1 0.77 970 16.61 15.78 15.21
3HMI 160L-6 11 90.3 0.78 970 23.73 22.54 21.73
3HMI 180L-6 15 91.2 0.81 978 30.85 29.31 28.25
3HMI 200L1-6 18.5 91.7 0.81 980 37.84 35.95 34.65
3HMI 200L2-6 22 92.2 0.83 980 43.68 41.50 40.00
3HMI 225M-6 30 92.9 0.84 980 58.41 55.49 53.48
3HMI 250M-6 37 93.9 0.86 985 69.62 66.13 63.74
3HMI 280S-6 45 93.7 0.86 985 84.85 80.61 77.69
3HMI 280M-6 55 94.1 0.86 985 103.26 98.10 94.55
3HMI 315S-6 75 94.6 0.86 988 140.07 133.06 128.26
3HMI 315M-6 90 94.9 0.86 988 167.55 159.17 153.42
3HMI 315L1-6 110 95.1 0.86 988 204.35 194.14 187.12
3HMI 315L2-6 132 95.4 0.87 988 241.64 229.56 221.26
3HMI 355M1-6 160 95.6 0.88 990 288.97 274.52 264.60
3HMI 355M3-6 200 95.8 0.88 990 360.45 342.43 330.05
3HMI 355L2-6 250 95.8 0.88 990 450.57 428.04 412.57

 
 
                                               3HMI-IE3 Series Outline Dimensions .

TYPE MOUNTING DIMENSIONS OVERALL DIMENSIONS
EFF LEVEL Frame A B C D E F G H K Z KK P M N S T AB AC AD HD L
3HMI-IE3 80M 125 100 50 19 40 6 15.5 80 10 M6×16 1-M20×1.5 200 165 130 12 3.5 152 153 122 202 290
3HMI-IE3 90S 140 100 56 24 50 8 20 90 10 M8×19 2-M20×1.5 200 165 130 12 3.5 168 172 135 225 315
3HMI-IE3 90L 140 125 56 24 50 8 20 90 10 M8×19 2-M20×1.5 200 165 130 12 3.5 168 172 135 225 340
3HMI-IE3 100L 160 140 63 28 60 8 24 100 12 M10×22 2-M20×1.5 250 215 180 15 4 192 193 145 245 370
3HMI-IE3 112M 190 140 70 28 60 8 24 112 12 M10×22 2-M25×1.5 250 215 180 15 4 222 223 165 277 395
3HMI-IE3 132S 216 140 89 38 80 10 33.3 132 12 M12×28 2-M25×1.5 300 265 230 15 4 248 265 208 340 470
3HMI-IE3 132M 216 178 89 38 80 10 33.3 132 12 M12×28 2-M25×1.5 300 265 230 15 4 248 265 208 340 500
3HMI-IE3 160M 254 210 108 42 110 12 37 160 15 M12×28 2-M40×1.5 350 300 250 19 5 315 330 260 420 605
3HMI-IE3 160L 254 254 108 42 110 12 37 160 15 M12×28 2-M40×1.5 350 300 250 19 5 315 330 260 420 680
3HMI-IE3 180M 279 241 121 48 110 14 42.5 160 15 M12×28 2-M40×1.5 350 300 250 19 5 350 352 285 445 694
3HMI-IE3 180L 279 279 121 48 110 14 42.5 160 15 M12×28 2-M40×1.5 350 300 250 19 5 350 352 285 445 732
3HMI-IE3 200L 318 305 133 55 110 16 49 200 19 M20×42 2-M50×1.5 400 350 300 19 5 390 394 315 515 774
3HMI-IE3 225S(4-8P) 356 286 149 60 140 18 53 225 19 M20×42 2-M50×1.5 450 400 350 19 5 435 442 335 560 820
3HMI-IE3 225M(2P) 356 311 149 55 110 16 49 225 19 M20×42 2-M50×1.5 450 400 350 19 5 435 442 335 560 813
3HMI-IE3 225M(4-8P) 356 311 149 60 140 18 53 225 19 M20×42 2-M50×1.5 450 400 350 19 5 435 442 335 560 873
3HMI-IE3 250M(2P) 406 349 168 60 140 18 53 250 24 M20×42 2-M63×1.5 550 500 450 19 5 490 481 375 625 922
3HMI-IE3 250M(4-8P) 406 349 168 65 140 18 58 250 24 M20×42 2-M63×1.5 550 500 450 19 5 490 481 375 625 922
3HMI-IE3  280S(2P) 457 368 190 65 140 18 58 280 24 M20×42 2-M63×1.5 550 500 450 19 5 547 550 400 680 991
3HMI-IE3  280M(2P) 457 419 190 65 140 18 58 280 24 M20×42 2-M63×1.5 550 500 450 19 5 547 550 400 680 1040
3HMI-IE3  280S(4-8P) 457 368 190 75 140 20 67.5 280 24 M20×42 2-M63×1.5 550 500 450 19 5 547 550 400 680 991
3HMI-IE3  280M(4-8P) 457 419 190 75 140 20 67.5 280 24 M20×42 2-M63×1.5 550 500 450 19 5 547 550 400 680 1040
3HMI-IE3  315S(2P) 508 406 216 65 140 18 58 315 28 M20×42 2-M63×1.5 660 600 550 24 6 630 600 540 855 1160
3HMI-IE3  315M(2P) 508 457 216 65 140 18 58 315 28 M20×42 2-M63×1.5 660 600 550 24 6 630 600 540 855 1270
3HMI-IE3  315L(2P) 508 508 216 65 140 18 58 315 28 M20×42 2-M63×1.5 660 600 550 24 6 630 600 540 855 1270
3HMI-IE3  315S(4-10P) 508 406 216 80 170 22 71 315 28 M20×42 2-M63×1.5 660 600 550 24 6 630 600 540 855 1190
3HMI-IE3 315M(4-10P) 508 457 216 80 170 22 71 315 28 M20×42 2-M63×1.5 660 600 550 24 6 630 600 540 855 1300
3HMI-IE3  315L(4-10P) 508 508 216 80 170 22 71 315 28 M20×42 2-M63×1.5 660 600 550 24 6 630 600 540 855 1300
3HMI-IE3 355M(2P) 610 560 254 75 140 20 67.5 355 28 M20×42 2-M63×1.5 800 740 680 24 6 730 710 655 1571 1500
3HMI-IE3 355L(2P) 610 630 254 75 140 20 67.5 355 28 M20×42 2-M63×1.5 800 740 680 24 6 730 710 655 1571 1500
3HMI-IE3  355M(4-10P) 610 560 254 95 170 25 86 355 28 M20×42 2-M63×1.5 800 740 680 24 6 730 710 655 1571 1530
3HMI-IE3  355L(4-10P) 610 630 254 95 170 25 86 355 28 M20×42 2-M63×1.5 800 740 680 24 6 730 710 655 1571 1530
 

                                 
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Three-Phase
Function: Control
Casing Protection: Protection Type
Number of Poles: 4
Customization:
Available

|

induction motor

How do variable frequency drives (VFDs) impact the performance of AC motors?

Variable frequency drives (VFDs) have a significant impact on the performance of AC motors. A VFD, also known as a variable speed drive or adjustable frequency drive, is an electronic device that controls the speed and torque of an AC motor by varying the frequency and voltage of the power supplied to the motor. Let’s explore how VFDs impact AC motor performance:

  • Speed Control: One of the primary benefits of using VFDs is the ability to control the speed of AC motors. By adjusting the frequency and voltage supplied to the motor, VFDs enable precise speed control over a wide range. This speed control capability allows for more efficient operation of the motor, as it can be operated at the optimal speed for the specific application. It also enables variable speed operation, where the motor speed can be adjusted based on the load requirements, resulting in energy savings and enhanced process control.
  • Energy Efficiency: VFDs contribute to improved energy efficiency of AC motors. By controlling the motor speed based on the load demand, VFDs eliminate the energy wastage that occurs when motors run at full speed even when the load is light. The ability to match the motor speed to the required load reduces energy consumption and results in significant energy savings. In applications where the load varies widely, such as HVAC systems, pumps, and fans, VFDs can provide substantial energy efficiency improvements.
  • Soft Start and Stop: VFDs offer soft start and stop capabilities for AC motors. Instead of abruptly starting or stopping the motor, which can cause mechanical stress and electrical disturbances, VFDs gradually ramp up or down the motor speed. This soft start and stop feature reduces mechanical wear and tear, extends the motor’s lifespan, and minimizes voltage dips or spikes in the electrical system. It also eliminates the need for additional mechanical devices, such as motor starters or brakes, improving overall system reliability and performance.
  • Precision Control and Process Optimization: VFDs enable precise control over AC motor performance, allowing for optimized process control in various applications. The ability to adjust motor speed and torque with high accuracy enables fine-tuning of system parameters, such as flow rates, pressure, or temperature. This precision control enhances overall system performance, improves product quality, and can result in energy savings by eliminating inefficiencies or overcompensation.
  • Motor Protection and Diagnostic Capabilities: VFDs provide advanced motor protection features and diagnostic capabilities. They can monitor motor operating conditions, such as temperature, current, and voltage, and detect abnormalities or faults in real-time. VFDs can then respond by adjusting motor parameters, issuing alerts, or triggering shutdowns to protect the motor from damage. These protection and diagnostic features help prevent motor failures, reduce downtime, and enable predictive maintenance, resulting in improved motor reliability and performance.
  • Harmonics and Power Quality: VFDs can introduce harmonics into the electrical system due to the switching nature of their operation. Harmonics are undesirable voltage and current distortions that can impact power quality and cause issues in the electrical distribution network. However, modern VFDs often include built-in harmonic mitigation measures, such as line reactors or harmonic filters, to minimize harmonics and ensure compliance with power quality standards.

In summary, VFDs have a profound impact on the performance of AC motors. They enable speed control, enhance energy efficiency, provide soft start and stop capabilities, enable precision control and process optimization, offer motor protection and diagnostic features, and address power quality considerations. The use of VFDs in AC motor applications can lead to improved system performance, energy savings, increased reliability, and enhanced control over various industrial and commercial processes.

induction motor

How do AC motors contribute to the functioning of household appliances?

AC motors play a crucial role in the functioning of numerous household appliances by converting electrical energy into mechanical energy. These motors are used in a wide range of devices, powering various components and performing essential tasks. Let’s explore how AC motors contribute to the functioning of household appliances:

  • Kitchen Appliances: AC motors are found in various kitchen appliances, such as refrigerators, freezers, dishwashers, and blenders. In refrigerators and freezers, AC motors drive the compressor, which circulates the refrigerant and maintains the desired temperature. Dishwashers use AC motors to power the water pumps, spray arms, and the motorized detergent dispenser. Blenders utilize AC motors to rotate the blades and blend ingredients.
  • Laundry Appliances: AC motors are integral to laundry appliances like washing machines and clothes dryers. Washing machines rely on AC motors to power the agitator or the drum, facilitating the washing and spinning cycles. Clothes dryers use AC motors to rotate the drum and operate the blower fan, facilitating the drying process.
  • Vacuum Cleaners: Vacuum cleaners utilize AC motors to generate suction and drive the motorized brush or beater bar. These motors power the fan or impeller, creating the necessary airflow for effective cleaning.
  • Fans and Air Circulation: AC motors are employed in various types of fans, including ceiling fans, table fans, and pedestal fans. These motors drive the fan blades, producing airflow and facilitating air circulation to provide cooling or ventilation in rooms. Additionally, AC motors power exhaust fans used in kitchens, bathrooms, and range hoods to remove odors, smoke, or excess moisture.
  • Air Conditioning and Heating Systems: AC motors are critical components in air conditioning and heating systems. They power the compressor, condenser fan, and blower fan, which are responsible for circulating refrigerant, dissipating heat, and delivering conditioned air throughout the house. AC motors enable the regulation of temperature and humidity levels, ensuring comfort in residential spaces.
  • Garage Door Openers: AC motors are utilized in garage door openers to drive the mechanism responsible for opening and closing the garage door. These motors generate the necessary torque to lift or lower the door smoothly and efficiently.
  • Other Appliances: AC motors are also found in a variety of other household appliances. For instance, they power pumps in water heaters, swimming pool filters, and sump pumps. AC motors are used in dehumidifiers, humidifiers, and air purifiers to drive the fans and other internal components. They are also present in audiovisual equipment, such as DVD players, record players, and fans used for cooling electronics.

In summary, AC motors are essential components in household appliances, enabling their proper functioning and delivering the mechanical energy required for various tasks. From kitchen appliances to laundry machines, fans, air conditioning systems, and more, AC motors provide the necessary power and functionality to enhance our daily lives.

induction motor

Are there different types of AC motors, and what are their specific applications?

Yes, there are different types of AC motors, each with its own design, characteristics, and applications. The main types of AC motors include:

  1. Induction Motors: Induction motors are the most commonly used type of AC motor. They are robust, reliable, and suitable for a wide range of applications. Induction motors operate based on the principle of electromagnetic induction. They consist of a stator with stator windings and a rotor with short-circuited conductive bars or coils. The rotating magnetic field produced by the stator windings induces currents in the rotor, creating a magnetic field that interacts with the stator field and generates torque. Induction motors are widely used in industries such as manufacturing, HVAC systems, pumps, fans, compressors, and conveyor systems.
  2. Synchronous Motors: Synchronous motors are another type of AC motor commonly used in applications that require precise speed control. They operate at synchronous speed, which is determined by the frequency of the AC power supply and the number of motor poles. Synchronous motors have a rotor with electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed. Synchronous motors are often used in applications such as industrial machinery, generators, compressors, and large HVAC systems.
  3. Brushless DC Motors: While the name suggests “DC,” brushless DC motors are actually driven by AC power. They utilize electronic commutation instead of mechanical brushes for switching the current in the motor windings. Brushless DC motors offer high efficiency, low maintenance, and precise control over speed and torque. They are commonly used in applications such as electric vehicles, robotics, computer disk drives, aerospace systems, and consumer electronics.
  4. Universal Motors: Universal motors are versatile motors that can operate on both AC and DC power. They are designed with a wound stator and a commutator rotor. Universal motors offer high starting torque and can achieve high speeds. They are commonly used in applications such as portable power tools, vacuum cleaners, food mixers, and small appliances.
  5. Shaded Pole Motors: Shaded pole motors are simple and inexpensive AC motors. They have a single-phase stator and a squirrel cage rotor. Shaded pole motors are characterized by low starting torque and relatively low efficiency. Due to their simple design and low cost, they are commonly used in applications such as small fans, refrigeration equipment, and appliances.

These are some of the main types of AC motors, each with its unique features and applications. The selection of an AC motor type depends on factors such as the required torque, speed control requirements, efficiency, cost, and environmental conditions. Understanding the specific characteristics and applications of each type allows for choosing the most suitable motor for a given application.

China manufacturer Ie4 Electric AC Motor for Forklift Sewing Coil Winding Machine Rice Mill Three Phase Asynchronous Electric Motors   vacuum pump brakesChina manufacturer Ie4 Electric AC Motor for Forklift Sewing Coil Winding Machine Rice Mill Three Phase Asynchronous Electric Motors   vacuum pump brakes
editor by CX 2024-04-12

China OEM Ye3-80m1-2 Customized Frequency Ye2 Series Three Phase AC Electric Induction Motors 380V 415V 440V vacuum pump for ac

Product Description

Product Description

 Y series motors are totally enclosed fan cooled(TEFC).squirrel cage three-phase induction motors,developed with new technique They are renewal and upgrading products of Y-series The mounting dimension is fully comformed with IEC standard. The motors have the merits of beautiful modeling ,compact structure ,low noise,high efficiency,large staring torque,easy serving,etc The motors are adopted with F class insulation and designed with assessing method for insulation practice,it enhances greatly motor’s safety and reliability.These motors have reached an international advandced level  Y series motors can be widely used in various machines and equipments,such as drilling machines ,blower ,pumps,compressors,transporters, agricultural and food processing machines.

Ambient Temperature

-15ºC≤0≤40ºC

Altitude

Not exceeding 1000 CHINAMFG

Rated Voltage

380V±5%

Protection Type

IP44/IP54

Connection

Y Start-Connection for 3 Kw and below

Y Date-Connection for 3 Kw or more

Cooling Type 

IC0141

Insulation Class

Class B/Class F

Rated Frequency

50Hz/60Hz

Duty/Rating

Continuous(S1) Or customized 

The terminal box IP55

If you need more information, please contact us.

 

Product Parameters

Type Power (kw) Current (A) Speed (r/min) Eff.% P.F N.m Tst
Tn
Ist
Tn
Tmax
Tn
dB(A)
synchronous speed 3000 r/min
YE3-63M1-2 0.18 0.53 2720 63.9 0.8 0.63 2.2 5.5 2.2 61
YE3-63M2-2 0.25 0.70  2720 67.1 0.81 0.88 2.2 5.5 2.2 61
YE3-71M1-2 0.37 1.0  2740 69.0  0.81 1.29 2.2 6.1 2.2 62
YE3-71M2-2 0.55 1.4 2870 72.3 0.82 1.92 2.2 6.1 2.2 62
YE3-80M1-2 0.75 1.7 2875 80.7 0.82 2.50  2.2 7.0  2.3 62
YE3-80M2-2 1.1 2.4 2880 82.7 0.83 3.65 2.2 7.3 2.3 62
YE3-90S-2 1.5 3.2 2880 84.2 0.84 4.97 2.2 7.6 2.3 67
YE3-90L-2 2.2 4.6 2880 85.9 0.85 7.30  2.2 7.6 2.3 67
YE3-100L-2 3 6.0  2915 87.1 0.87 9.95 2.2 7.8 2.3 74
YE3-112M-2 4 7.8 2935 88.1 0.88 13.1 2.2 8.3 2.3 77
YE3-132S1-2 5.5 10.6 2930 89.2 0.88 17.9 2.0  8.3 2.3 79
YE3-132S2-2 7.5 14.4 2950 90.1 0.88 24.4 2.0  7.9 2.3 79
YE3-160M1-2 11 20.6 2945 91.2 0.89 35.6 2.0  8.1 2.3 81
YE3-160M2-2 15 27.9 2945 91.9 0.89 48.6 2.0  8.1 2.3 81
YE3-160L-2 18.5 34.2 2950 92.4 0.89 60.0  2.0  8.2 2.3 81
YE3-180M-2 22 40.5 2965 92.7 0.89 71.2  2.0  8.2 2.3 84
YE3-200L1-2 30 54.9 2965 93.3 0.89 96.6 2.0  7.6 2.3 84
YE3-200L2-2 37 67.4 2965 93.7 0.89 119 2.0  7.6 2.3 86
YE3-225M-2 45 80.8 2965 94.0  0.90  145 2.0  7.7 2.3 89
YE3-250M-2 55 98.5 2975 94.3 0.90  177 2.0  7.7 2.3 91
YE3-280S-2 75 134 2975 94.7 0.90  241 1.8 7.1 2.3 91
YE3-280M-2 90 160 2975 95.0  0.90  289 1.8 7.1 2.3 92
YE3-315S-2 110 195 2985 95.2 0.90  352 1.8 7.1 2.3 92
YE3-315M-2 132 234 2985 95.4 0.90  422 1.8 7.1 2.3 92
YE3-315L1-2 160 279 2985 95.6 0.91 512 1.8 7.2 2.3 92
YE3-315L-2 185 323 2985 95.7 0.91 592 1.8 7.2 2.3 92
YE3-315L2-2 200 349 2985 95.8 0.91 640 1.8 7.2 2.2 100
YE3-315L3-2 220 383 2985 95.8 0.91 704 1.8 7.2 2.2 100
YE3-355M1-2 220 383 2985 95.8 0.91 704 1.8 7.2 2.2 100
YE3-355M-2 250 436 2985 95.8 0.91 800 1.6 7.2 2.2 100
YE3-355L1-2 280 488 2985 95.8 0.91 896 1.6 7.2 2.2 100
YE3-355L-2 315 549 2985 95.8 0.91 1008 1.6 7.2 2.2 100
YE3-355L2-2 355 619 2985 95.8 0.91 1136 1.6 7.2 2.2 100
YE3-355L3-2 375 654 2985 95.8 0.91 1200 1.6 7.2 2.2 100

Type Power (kw) Current (A) Speed (r/min) Eff.% P.F N.m Tst
Tn
Ist
Tn
Tmax
Tn
dB(A)
synchronous speed 1500 r/min  
YE3-63M1-4 0.12 0.45 1310 55.8 0.72 0.87 2.1 4.4 2.2 52
YE3-63M2-4 0.18 0.64 1310 58.6 0.73 1.31 2.1 4.4 2.2 52
YE3-71M1-4 0.25 0.81 1330 63.6 0.74 1.8 2.1 5.2 2.2 55
YE3-71M2-4 0.37 1.1 1330 65.3 0.75 2.66 2.1 5.2 2.2 55
YE3-80M1-4 0.55 1.4 1430 80.6 0.75 3.67 2.3 6.5 2.3 56
YE3-80M2-4 0.75 1.8 1430 82.5 0.75 5.01 2.3 6.6 2.3 56
YE3-90S-4 1.1 2.6 1430 84.1 0.76 7.35 2.3 6.8 2.3 59
YE3-90L-4 1.5 3.5 1430 85.3 0.77 10 2.3 7.0  2.3 59
YE3-100L1-4 2.2 4.8 1440 86.7 0.81 14.6 2.3 7.6 2.3 64
YE3-100L2-4 3 6.3 1440 87.7 0.82 19.9 2.3 7.6 2.3 64
YE3-112M-4 4 8.4 1455 88.6 0.82 26.3 2.2 7.8 2.3 65
YE3-132S-4 5.5 11.2 1465 89.6 0.83 35.9 2.0  7.9 2.3 71
YE3-132M-4 7.5 15.0  1465 90.4 0.84 48.9 2.0  7.5 2.3 71
YE3-160M-4 11 21.5 1470 91.4 0.85 71.5 2.0  7.7 2.3 73
YE3-160L-4 15 28.8 1470 92.1 0.86 97.4 2.0  7.8 2.3 73
YE3-180M-4 18.5 35.3 1470 92.6 0.86 120 2.0  7.8 2.3 76
YE3-180L-4 22 41.8 1470 93.0  0.86 143 2.0  7.8 2.3 76
YE3-200L-4 30 56.6 1475 93.6 0.86 194 2.0  7.3 2.3 76
YE3-225S-4 37 69.6 1480 93.9 0.86 239 2.0  7.4 2.3 78
YE3-225M-4 45 84.4 1480 94.2 0.86 290 2.0  7.4 2.3 78
YE3-250M-4 55 103 1485 94.6 0.86 354 2.0  7.4 2.3 79
YE3-280S-4 75 136 1490 95.0  0.88 481 2.0  6.7 2.3 80
YE3-280M-4 90 163 1490 95.2 0.88 577 2.0  6.9 2.3 80
YE3-315S-4 110 197 1490 95.4 0.89 705 2.0  7.0  2.2 88
YE3-315M-4 132 236 1490 95.6 0.89 846 2.0  7.0  2.2 88
YE3-315L1-4 160 285 1490 95.8 0.89 1026 2.0  7.1 2.2 88
YE3-315L-4 185 329 1490 95.9 0.89 1186 2.0  7.1 2.2 88
YE3-315L2-4 200 352 1490 96.0  0.90  1282 2.0  7.1 2.2 88
YE3-315L3-4 220 387 1490 96.0  0.90  1410 2.0  7.1 2.2 88
YE3-355M1-4 220 387 1490 96.0  0.90  1410 2.0  7.1 2.2 95
YE3-355M-4 250 440 1495 96.0  0.90  1597 2.0  7.1 2.2 95
YE3-355L1-4 280 492 1495 96.0  0.90  1789 2.0  7.1 2.2 95
YE3-355L-4 315 554 1495 96.0  0.90  2012 2.0  7.1 2.2 95
YE3-355L2-4 355 638 1495 96.0  0.88 2268 1.7 7.0  2.2 95
YE3-355L3-4 375 674 1495 96.0  0.88 2395 1.7 7.0  2.2 95

Type Power (kw) Current (A) Speed (r/min) Eff.% P.F N.m Tst
Tn
Ist
Tn
Tmax
Tn
dB(A)
synchronous speed 1000 r/min
YE3-71M1-6 0.18 0.76 850 54.6 0.66 2.02 1.9 4.0  2.0  52
YE3-71M2-6 0.25 0.97 850 57.4 0.66 2.81 1.9 4.0  2.0  52
YE3-80M1-6 0.37 1.2 910 68 0.70  3.88 1.9 5.5 2.0  54
YE3-80M2-6 0.55 1.6 925 72 0.71 5.68 1.9 5.8 2.1 54
YE3-90S-6 0.75 2 945 78.9 0.71 7.58 2.0  6.0  2.1 57
YE3-90L-6 1.1 2.8 950 81 0.73 11.1 2.0  6.0  2.1 57
YE3-100L-6 1.5 3.8 950 82.5 0.73 15.1 2.0  6.5 2.1 61
YE3-112M-6 2.2 5.4 965 84.3 0.74 21.8 2.0  6.6 2.1 65
YE3-132S-6 3 7.2 975 85.6 0.74 29.4 1.9 6.8 2.1 69
YE3-132M1-6 4 9.5 975 86.8 0.74 39.2 1.9 6.8 2.1 69
YE3-132M2-6 5.5 12.7 975 88.0  0.75 53.9 1.9 7.0  2.1 69
YE3-160M-6 7.5 16.2 980 89.1 0.79 73.1 1.9 7.0  2.1 70
YE3-160L-6 11 23.1 980 90.3 0.80  107 1.9 7.2 2.1 70
YE3-180L-6 15 30.9 980 91.2  0.81 146 1.9 7.3 2.1 73
YE3-200L1-6 18.5 37.8 985 91.7 0.81 179 1.9 7.3 2.1 73
YE3-200L2-6 22 44.8 985 92.2 0.81 213 1.9 7.4 2.1 73
YE3-225M-6 30 59.1 985 92.9 0.83 291 1.9 6.9 2.1 74
YE3-250M-6 37 71.7 985 93.3 0.84 359 1.9 7.1 2.1 76
YE3-280S-6 45 85.8 990 93.7 0.85 434 1.9 7.3 2.0  78
YE3-280M-6 55 103 990 94.1 0.86 531 1.9 7.3 2.0  78
YE3-315S-6 75 143 990 94.6 0.84 723 1.9 6.6 2.0  83
YE3-315M-6 90 170 990 94.9 0.85 868 1.9 6.7 2.0  83
YE3-315L1-6 110 207 990 95.1 0.85 1061 1.9 6.7 2.0  83
YE3-315L2-6 132 244 990 95.4 0.86 1273 1.9 6.8 2.0  83
YE3-315L3-6 160 296 990 95.6 0.86 1543 1.9 6.8 2.0  83
YE3-355M1-6 160 296 995 95.6 0.86 1536 1.9 6.8 2.0  85
YE3-355M-6 185 342 995 95.7 0.86 1776 1.9 6.8 2.0  85
YE3-355M2-6 200 365 995 95.8 0.87 1920 1.9 6.8 2.0  85
YE3-355L1-6 220 401 995 95.8 0.87 2112 1.9 6.8 2.0  85
YE3-355L-6 250 456 995 95.8 0.87 2399 1.9 6.8 2.0  85
YE3-355L2-6 280 510 995 95.8 0.87 2687 1.9 6.8 2.0  85
YE3-355L3-6 315 581 995 95.8 0.86 3571 1.9 6.8 2.0  85
                     
                     
                     
                     
Type Power (kw) Current (A) Speed (r/min) Eff.% P.F N.m Tst
Tn
Ist
Tn
Tmax
Tn
dB(A)
synchronous speed 750 r/min
YE3-80M1-8 0.18 0.80  700 56.0  0.61 2.46 1.8 3.3 1.9 52
YE3-80M2-8 0.25 1.1 700 59.0  0.61 3.41 1.8 3.3 1.9 52
YE3-90S-8 0.37 1.4 695 66.0  0.61 5.08 1.8 4.0  1.9 56
YE3-90L-8 0.55 2.0  695 70.0  0.61 7.56 1.8 4.0  2.0  56
YE3-100L1-8 0.75 2.3 705 73.5 0.67 10.2 1.8 4.0  2.0  59
YE3-100L2-8 1.1 3.2 705 76.5 0.69 14.9 1.8 5.0  2.0  59
YE3-112M-8 1.5 4.2 715 77.5 0.70  20.0  1.8 5.0  2.0  61
YE3-132S-8 2.2 5.9 730 80.0  0.71 28.8 1.8 6.0  2.2 64
YE3-132M-8 3 7.6 730 82.5 0.73 39.2 1.8 6.0  2.2 64
YE3-160M1-8 4 9.8 725 85.0  0.73 52.7 1.9 6.0  2.2 68
YE3-160M2-8 5.5 13.1 725 86.0  0.74 72.4 1.9 6.0  2.2 68
YE3-160L-8 7.5 17.4 730 87.5 0.75 98.1 1.9 6.0  2.2 68
YE3-180L-8 11 25.0  725 89.0  0.75 145 1.9 6.5 2.2 70
YE3-200L-8 15 33.2 730 90.4 0.76 196 2.0  6.6 2.2 73
YE3-225S-8 18.5 40.6 735 91.2 0.76 240 2.0  6.6 2.2 73
YE3-225M-8 22 46.8 735 91.5 0.78 286 2.0  6.6 2.2 73
YE3-250M-8 30 62.6 735 92.2 0.79 390 1.9 6.5 2.0  75
YE3-280S-8 37 76.5 740 93.0  0.79 478 1.8 6.6 2.0  76
YE3-280M-8 45 92.6 740 93.5 0.79 581 1.8 6.6 2.0  76
YE3-315S-8 55 110 740 93.8 0.81 710 1.8 6.6 2.0  82
YE3-315M-8 75 150 740 94.0  0.81 968 1.8 6.2 2.0  82
YE3-315L1-8 90 176 740 94.5 0.82 1161 1.8 6.4 2.0  82
YE3-315L2-8 110 215 740 94.8 0.82 1420 1.8 6.4 2.0  82
YE3-355M1-8 132 257 745 95.0  0.82 1692 1.8 6.4 2.0  90
YE3-355M2-8 160 312 745 95.0  0.82 2051 1.8 6.4 2.0  90
YE3-355L1-8 185 360 745 95.2 0.82 2371 1.8 6.4 2.0  90
YE3-355L-8 200 385 745 95.2 0.83 2564 1.8 6.4 2.0  90
YE3-355L2-8 220 423 745 95.2 0.83 2820 1.8 6.4 2.0  90
YE3-355L3-8 250 481 745 95.2 0.83 3205 1.8 6.5 2.0  90
synchronous speed 600 r/min
YE3-315S-10 45 99 590 92.0  0.75 728 1.5 6.2 2.0  90
YE3-315M-10 55 120 590 92.5 0.75 890 1.5 6.2 2.0  90
YE3-315L1-10 75 161 590 93.0  0.76 1214 1.5 5.8 2.0  90
YE3-315L2-10 90 190 590 93.4 0.77 1457 1.5 5.9 2.0  90
YE3-355M1-10 110 228 595 93.8 0.78 1766 1.3 6.0  2.0  90
YE3-355M2-10 132 273 595 94.2 0.78 2119 1.3 6.0  2.0  90
YE3-355L1-10 160 331 595 94.2 0.78 2568 1.3 6.0  2.0  90
YE3-355L-10 185 383 595 94.2 0.78 2969 1.3 6.0  2.0  90
YE3-355L2-10 200 414 595 94.2 0.78 3210 1.3 6.0  2.0  90

Detailed Photos

FAQ

Q: Where is Your factory?
A: HangZhou city, ZHangZhoug Province.
 
Q: Do you accept OEM/ODM service?
A: Yes, avaliable.
 
Q: Are you trading company or manufacturer?
A: We are a manufacturer.
 
Q: What about the shipment?
A: By sea, By air and By express delivery.
 
Q: What is the delivery time?
A: It depends on the order quantity, usually 35days after confirmation.
 
Q: Can I buy different products in 1 container?
A: Yes, but no more than 5 models.
 
Q: What is the warranty time?
A: One year.

Q: Can you offer the sample?
A: Of course we can.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Universal, Household Appliances
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Species: Y, Y2 Series Three-Phase
Rotor Structure: Squirrel-Cage
Casing Protection: Closed Type
Samples:
US$ 45/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

Can you explain the concept of motor efficiency and how it relates to AC motors?

Motor efficiency is a measure of how effectively an electric motor converts electrical power into mechanical power. It represents the ratio of the motor’s useful output power (mechanical power) to the input power (electrical power) it consumes. Higher efficiency indicates that the motor converts a larger percentage of the electrical energy into useful mechanical work, while minimizing energy losses in the form of heat and other inefficiencies.

In the case of AC motors, efficiency is particularly important due to their wide usage in various applications, ranging from residential appliances to industrial machinery. AC motors can be both induction motors, which are the most common type, and synchronous motors, which operate at a constant speed synchronized with the frequency of the power supply.

The efficiency of an AC motor is influenced by several factors:

  1. Motor Design: The design of the motor, including its core materials, winding configuration, and rotor construction, affects its efficiency. Motors that are designed with low-resistance windings, high-quality magnetic materials, and optimized rotor designs tend to have higher efficiency.
  2. Motor Size: The physical size of the motor can also impact its efficiency. Larger motors generally have higher efficiency because they can dissipate heat more effectively, reducing losses. However, it’s important to select a motor size that matches the application requirements to avoid operating the motor at low efficiency due to underloading.
  3. Operating Conditions: The operating conditions, such as load demand, speed, and temperature, can influence motor efficiency. Motors are typically designed for maximum efficiency at or near their rated load. Operating the motor beyond its rated load or at very light loads can reduce efficiency. Additionally, high ambient temperatures can cause increased losses and reduced efficiency.
  4. Magnetic Losses: AC motors experience losses due to magnetic effects, such as hysteresis and eddy current losses in the core materials. These losses result in heat generation and reduce overall efficiency. Motor designs that minimize magnetic losses through the use of high-quality magnetic materials and optimized core designs can improve efficiency.
  5. Mechanical Friction and Windage Losses: Friction and windage losses in the motor’s bearings, shaft, and rotating parts also contribute to energy losses and reduced efficiency. Proper lubrication, bearing selection, and reducing unnecessary mechanical resistance can help minimize these losses.

Efficiency is an important consideration when selecting an AC motor, as it directly impacts energy consumption and operating costs. Motors with higher efficiency consume less electrical power, resulting in reduced energy bills and a smaller environmental footprint. Additionally, higher efficiency often translates to less heat generation, which can enhance the motor’s reliability and lifespan.

Regulatory bodies and standards organizations, such as the International Electrotechnical Commission (IEC) and the National Electrical Manufacturers Association (NEMA), provide efficiency classes and standards for AC motors, such as IE efficiency classes and NEMA premium efficiency standards. These standards help consumers compare the efficiency levels of different motors and make informed choices to optimize energy efficiency.

In summary, motor efficiency is a measure of how effectively an AC motor converts electrical power into mechanical power. By selecting motors with higher efficiency, users can reduce energy consumption, operating costs, and environmental impact while ensuring reliable and sustainable motor performance.

induction motor

Are there energy-saving technologies or features available in modern AC motors?

Yes, modern AC motors often incorporate various energy-saving technologies and features designed to improve their efficiency and reduce power consumption. These advancements aim to minimize energy losses and optimize motor performance. Here are some energy-saving technologies and features commonly found in modern AC motors:

  • High-Efficiency Designs: Modern AC motors are often designed with higher efficiency standards compared to older models. These motors are built using advanced materials and optimized designs to reduce energy losses, such as resistive losses in motor windings and mechanical losses due to friction and drag. High-efficiency motors can achieve energy savings by converting a higher percentage of electrical input power into useful mechanical work.
  • Premium Efficiency Standards: International standards and regulations, such as the NEMA Premium® and IE (International Efficiency) classifications, define minimum energy efficiency requirements for AC motors. Premium efficiency motors meet or exceed these standards, offering improved efficiency compared to standard motors. These motors often incorporate design enhancements, such as improved core materials, reduced winding resistance, and optimized ventilation systems, to achieve higher efficiency levels.
  • Variable Frequency Drives (VFDs): VFDs, also known as adjustable speed drives or inverters, are control devices that allow AC motors to operate at variable speeds by adjusting the frequency and voltage of the electrical power supplied to the motor. By matching the motor speed to the load requirements, VFDs can significantly reduce energy consumption. VFDs are particularly effective in applications where the motor operates at a partial load for extended periods, such as HVAC systems, pumps, and fans.
  • Efficient Motor Control Algorithms: Modern motor control algorithms, implemented in motor drives or control systems, optimize motor operation for improved energy efficiency. These algorithms dynamically adjust motor parameters, such as voltage, frequency, and current, based on load conditions, thereby minimizing energy wastage. Advanced control techniques, such as sensorless vector control or field-oriented control, enhance motor performance and efficiency by precisely regulating the motor’s magnetic field.
  • Improved Cooling and Ventilation: Effective cooling and ventilation are crucial for maintaining motor efficiency. Modern AC motors often feature enhanced cooling systems, including improved fan designs, better airflow management, and optimized ventilation paths. Efficient cooling helps prevent motor overheating and reduces losses due to heat dissipation. Some motors also incorporate thermal monitoring and protection mechanisms to avoid excessive temperatures and ensure optimal operating conditions.
  • Bearings and Friction Reduction: Friction losses in bearings and mechanical components can consume significant amounts of energy in AC motors. Modern motors employ advanced bearing technologies, such as sealed or lubrication-free bearings, to reduce friction and minimize energy losses. Additionally, optimized rotor and stator designs, along with improved manufacturing techniques, help reduce mechanical losses and enhance motor efficiency.
  • Power Factor Correction: Power factor is a measure of how effectively electrical power is being utilized. AC motors with poor power factor can contribute to increased reactive power consumption and lower overall power system efficiency. Power factor correction techniques, such as capacitor banks or power factor correction controllers, are often employed to improve power factor and minimize reactive power losses, resulting in more efficient motor operation.

By incorporating these energy-saving technologies and features, modern AC motors can achieve significant improvements in energy efficiency, leading to reduced power consumption and lower operating costs. When considering the use of AC motors, it is advisable to select models that meet or exceed recognized efficiency standards and consult manufacturers or experts to ensure the motor’s compatibility with specific applications and energy-saving requirements.

induction motor

Are there different types of AC motors, and what are their specific applications?

Yes, there are different types of AC motors, each with its own design, characteristics, and applications. The main types of AC motors include:

  1. Induction Motors: Induction motors are the most commonly used type of AC motor. They are robust, reliable, and suitable for a wide range of applications. Induction motors operate based on the principle of electromagnetic induction. They consist of a stator with stator windings and a rotor with short-circuited conductive bars or coils. The rotating magnetic field produced by the stator windings induces currents in the rotor, creating a magnetic field that interacts with the stator field and generates torque. Induction motors are widely used in industries such as manufacturing, HVAC systems, pumps, fans, compressors, and conveyor systems.
  2. Synchronous Motors: Synchronous motors are another type of AC motor commonly used in applications that require precise speed control. They operate at synchronous speed, which is determined by the frequency of the AC power supply and the number of motor poles. Synchronous motors have a rotor with electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed. Synchronous motors are often used in applications such as industrial machinery, generators, compressors, and large HVAC systems.
  3. Brushless DC Motors: While the name suggests “DC,” brushless DC motors are actually driven by AC power. They utilize electronic commutation instead of mechanical brushes for switching the current in the motor windings. Brushless DC motors offer high efficiency, low maintenance, and precise control over speed and torque. They are commonly used in applications such as electric vehicles, robotics, computer disk drives, aerospace systems, and consumer electronics.
  4. Universal Motors: Universal motors are versatile motors that can operate on both AC and DC power. They are designed with a wound stator and a commutator rotor. Universal motors offer high starting torque and can achieve high speeds. They are commonly used in applications such as portable power tools, vacuum cleaners, food mixers, and small appliances.
  5. Shaded Pole Motors: Shaded pole motors are simple and inexpensive AC motors. They have a single-phase stator and a squirrel cage rotor. Shaded pole motors are characterized by low starting torque and relatively low efficiency. Due to their simple design and low cost, they are commonly used in applications such as small fans, refrigeration equipment, and appliances.

These are some of the main types of AC motors, each with its unique features and applications. The selection of an AC motor type depends on factors such as the required torque, speed control requirements, efficiency, cost, and environmental conditions. Understanding the specific characteristics and applications of each type allows for choosing the most suitable motor for a given application.

China OEM Ye3-80m1-2 Customized Frequency Ye2 Series Three Phase AC Electric Induction Motors 380V 415V 440V   vacuum pump for ac	China OEM Ye3-80m1-2 Customized Frequency Ye2 Series Three Phase AC Electric Induction Motors 380V 415V 440V   vacuum pump for ac
editor by CX 2024-04-09

China OEM CHINAMFG Brand General Purpose Motors High Efficiency Ie2 Three Phase AC Electric Motor Yx3-112m – 4 4kw 5HP vacuum pump adapter

Product Description

YX3 CE Approved Three Phase Induction High Speed Cement Mining Motor for Blender
———————————————————————————————

Applications: Can be applied in the machines where continuous duty is required, typical applications like

  • Pumps
  • Fans
  • Compressors
  • Lifting equipment
  • Production industry

General Description

  • Frame sizes: 63 to 355M/L     
  • Rated output: 0.18 to 375kW
  • Voltage: 380V                         
  • Frequency: 50Hz or 60Hz
  • Poles: 2, 4, 6, 8,10                   
  • Efficiency levels: IE2
  • Duty Cycle: S1                         
  • Enclosure: IC411 – TEFC
  • Insulation class: F                     
  • Degree of protection: IP55/56/65/66
  • Service Factor: 1.0                   
  • Regreasing system: Frame 250 and above

Features
Beautiful profile, high efficiency and energy saving (Level 3 of GB186~8-2012), low noise, little vibration, reliable running.

Optional Features
Electrical:
Insulation Class:H; Design H
Thermal Protection: PTC Thermistor, Thermostat or PT100
Mechanical:
Others mountings
Protection Degree:IP56, IP65, IP66
Sealing:Lip seal, Oil seal
Space Heater, Double shaft ends
Drain Hole

Mounting
Conventional mounting type and suitable frame size are given in following table(with “√”)

Frame basic type derived type
B3 B5 B35 V1 V3 V5 V6 B6 B7 B8 V15 V36 B14 B34 V18
63~112
132~160
180~280
315~355

If there is no other request in the order or agreement, terminal box standard position is at the right side of the frame; data above may be changed without prior notice.

SITE

Show Room


Product and System Certificates

Patents

Honors

Premium Service

Quality Control

Wannan Motor Production Workshop and Flow Chart

Hundreds of Certificates, Honors and more COMPANY information please go to “ABOUT US”
—————————————————————————————————————————
Welcome to contact us directly…
wnmmotor
https://youtu.be/frVvg3yQqNM

WANNAN MOTOR      INDUSTRIAL SOLUTIONS
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving, Control, Motor for Blender
Casing Protection: Protection Type
Number of Poles: 2.4.6.8.10.12
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

What factors should be considered when selecting an AC motor for a particular application?

When selecting an AC motor for a particular application, several factors need to be considered to ensure the motor meets the requirements and performs optimally. Here are the key factors to consider:

  1. Power Requirements: Determine the power requirements of the application, including the required torque and speed. The motor should have adequate power output to meet the demands of the specific task. Consider factors such as starting torque, running torque, and speed range to ensure the motor can handle the load effectively.
  2. Motor Type: There are different types of AC motors, including induction motors, synchronous motors, and brushless DC motors. Each type has its own characteristics and advantages. Consider the application’s requirements and factors such as speed control, efficiency, and starting torque to determine the most suitable motor type.
  3. Environmental Conditions: Assess the environmental conditions in which the motor will operate. Factors such as temperature, humidity, dust, and vibration levels can impact motor performance and longevity. Choose a motor that is designed to withstand the specific environmental conditions of the application.
  4. Size and Space Constraints: Consider the available space for motor installation. Ensure that the physical dimensions of the motor, including its length, diameter, and mounting arrangement, are compatible with the available space. Additionally, consider the weight of the motor if it needs to be mounted or transported.
  5. Efficiency: Energy efficiency is an important consideration, as it can impact operational costs and environmental sustainability. Look for motors with high efficiency ratings, which indicate that they convert electrical energy into mechanical energy with minimal energy loss. Energy-efficient motors can lead to cost savings and reduced environmental impact over the motor’s lifespan.
  6. Control and Speed Requirements: Determine if the application requires precise speed control or if a fixed speed motor is sufficient. If variable speed control is needed, consider motors that can be easily controlled using variable frequency drives (VFDs) or other speed control mechanisms. For applications that require high-speed operation, select a motor that can achieve the desired speed range.
  7. Maintenance and Serviceability: Assess the maintenance requirements and serviceability of the motor. Consider factors such as the accessibility of motor components, ease of maintenance, availability of spare parts, and the manufacturer’s reputation for reliability and customer support. A motor that is easy to maintain and service can help minimize downtime and repair costs.
  8. Budget: Consider the budget constraints for the motor selection. Balance the desired features and performance with the available budget. In some cases, investing in a higher quality, more efficient motor upfront can lead to long-term cost savings due to reduced energy consumption and maintenance requirements.

By carefully considering these factors, it is possible to select an AC motor that aligns with the specific requirements of the application, ensuring optimal performance, efficiency, and reliability.

induction motor

How do AC motors contribute to the functioning of household appliances?

AC motors play a crucial role in the functioning of numerous household appliances by converting electrical energy into mechanical energy. These motors are used in a wide range of devices, powering various components and performing essential tasks. Let’s explore how AC motors contribute to the functioning of household appliances:

  • Kitchen Appliances: AC motors are found in various kitchen appliances, such as refrigerators, freezers, dishwashers, and blenders. In refrigerators and freezers, AC motors drive the compressor, which circulates the refrigerant and maintains the desired temperature. Dishwashers use AC motors to power the water pumps, spray arms, and the motorized detergent dispenser. Blenders utilize AC motors to rotate the blades and blend ingredients.
  • Laundry Appliances: AC motors are integral to laundry appliances like washing machines and clothes dryers. Washing machines rely on AC motors to power the agitator or the drum, facilitating the washing and spinning cycles. Clothes dryers use AC motors to rotate the drum and operate the blower fan, facilitating the drying process.
  • Vacuum Cleaners: Vacuum cleaners utilize AC motors to generate suction and drive the motorized brush or beater bar. These motors power the fan or impeller, creating the necessary airflow for effective cleaning.
  • Fans and Air Circulation: AC motors are employed in various types of fans, including ceiling fans, table fans, and pedestal fans. These motors drive the fan blades, producing airflow and facilitating air circulation to provide cooling or ventilation in rooms. Additionally, AC motors power exhaust fans used in kitchens, bathrooms, and range hoods to remove odors, smoke, or excess moisture.
  • Air Conditioning and Heating Systems: AC motors are critical components in air conditioning and heating systems. They power the compressor, condenser fan, and blower fan, which are responsible for circulating refrigerant, dissipating heat, and delivering conditioned air throughout the house. AC motors enable the regulation of temperature and humidity levels, ensuring comfort in residential spaces.
  • Garage Door Openers: AC motors are utilized in garage door openers to drive the mechanism responsible for opening and closing the garage door. These motors generate the necessary torque to lift or lower the door smoothly and efficiently.
  • Other Appliances: AC motors are also found in a variety of other household appliances. For instance, they power pumps in water heaters, swimming pool filters, and sump pumps. AC motors are used in dehumidifiers, humidifiers, and air purifiers to drive the fans and other internal components. They are also present in audiovisual equipment, such as DVD players, record players, and fans used for cooling electronics.

In summary, AC motors are essential components in household appliances, enabling their proper functioning and delivering the mechanical energy required for various tasks. From kitchen appliances to laundry machines, fans, air conditioning systems, and more, AC motors provide the necessary power and functionality to enhance our daily lives.

induction motor

What are the main components of an AC motor, and how do they contribute to its operation?

An AC motor consists of several key components that work together to facilitate its operation. These components include:

  1. Stator: The stator is the stationary part of an AC motor. It is typically made of a laminated core that provides a path for the magnetic flux. The stator contains stator windings, which are coils of wire wound around the stator core. The stator windings are connected to an AC power source and produce a rotating magnetic field when energized. The rotating magnetic field is a crucial element in generating the torque required for the motor’s operation.
  2. Rotor: The rotor is the rotating part of an AC motor. It is located inside the stator and is connected to a shaft. The rotor can have different designs depending on the type of AC motor. In an induction motor, the rotor does not have electrical connections. Instead, it contains conductive bars or coils that are short-circuited. The rotating magnetic field of the stator induces currents in the short-circuited rotor conductors, creating a magnetic field that interacts with the stator field and generates torque, causing the rotor to rotate. In a synchronous motor, the rotor contains electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed.
  3. Bearing: Bearings are used to support and facilitate the smooth rotation of the rotor shaft. They reduce friction and allow the rotor to rotate freely within the motor. Bearings are typically located at both ends of the motor shaft and are designed to withstand the axial and radial forces generated during operation.
  4. End Bells: The end bells, also known as end covers or end brackets, enclose the motor’s stator and rotor assembly. They provide mechanical support and protection for the internal components of the motor. End bells are typically made of metal and are designed to provide a housing for the bearings and secure the motor to its mounting structure.
  5. Fan or Cooling System: AC motors often generate heat during operation. To prevent overheating and ensure proper functioning, AC motors are equipped with fans or cooling systems. These help dissipate heat by circulating air or directing airflow over the motor’s components, including the stator and rotor windings. Effective cooling is crucial for maintaining the motor’s efficiency and extending its lifespan.
  6. Terminal Box or Connection Box: The terminal box is a housing located on the outside of the motor that provides access to the motor’s electrical connections. It contains terminals or connection points where external wires can be connected to supply power to the motor. The terminal box ensures a safe and secure connection of the motor to the electrical system.
  7. Additional Components: Depending on the specific design and application, AC motors may include additional components such as capacitors, centrifugal switches, brushes (in certain types of AC motors), and other control devices. These components are used for various purposes, such as improving motor performance, providing starting assistance, or enabling specific control features.

Each of these components plays a crucial role in the operation of an AC motor. The stator and rotor are the primary components responsible for generating the rotating magnetic field and converting electrical energy into mechanical motion. The bearings ensure smooth rotation of the rotor shaft, while the end bells provide structural support and protection. The fan or cooling system helps maintain optimal operating temperatures, and the terminal box allows for proper electrical connections. Additional components are incorporated as necessary to enhance motor performance and enable specific functionalities.

China OEM CHINAMFG Brand General Purpose Motors High Efficiency Ie2 Three Phase AC Electric Motor Yx3-112m - 4 4kw 5HP   vacuum pump adapter	China OEM CHINAMFG Brand General Purpose Motors High Efficiency Ie2 Three Phase AC Electric Motor Yx3-112m - 4 4kw 5HP   vacuum pump adapter
editor by CX 2024-04-03

China OEM Single Phase High Quality AC Universal Motors for Hair Dryers with Hot selling

Product Description

 single phase high quality  AC universal motors 

Basic specification

FOB Price:Get Latest Price
Model No:5615
Nominal Voltage:200-240V ,50 /60HZ
Certification:CCC,CB,REACH,CE,LVD,RoHS,GMC
Capable:CSA,UL
Minimum Order:1000PCS

Features:

1.Power supply AC 100V ~240V 50/60Hz is suitable.
2.Long life, low noise, high power, low temperature rising, small size
3.Different bracket mounting structure and different motor performance could be selected.
4.Widely used in many different appliance and field.
5.The motor could use copper wire and silicon steel lamination, it also can use aluminum wire and SPCC lamination. It can be customized by customers’ requirements.

 

Application: Universal
Speed: Constant Speed
Number of Stator: Single-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 2
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

Are there environmental considerations associated with the use of AC motors?

Yes, there are several environmental considerations associated with the use of AC motors. These considerations are primarily related to energy consumption, greenhouse gas emissions, and the disposal of motors at the end of their life cycle. Let’s explore these environmental considerations in detail:

  • Energy Efficiency: AC motors can have varying levels of energy efficiency, which directly impacts their environmental impact. Motors with higher efficiency convert a larger percentage of electrical energy into useful mechanical work, resulting in reduced energy consumption. By selecting and using high-efficiency AC motors, energy usage can be minimized, leading to lower greenhouse gas emissions and reduced reliance on fossil fuels for electricity generation.
  • Greenhouse Gas Emissions: The electricity consumed by AC motors is often produced by power plants that burn fossil fuels, such as coal, natural gas, or oil. The generation of electricity from these fossil fuels releases greenhouse gases, contributing to climate change. By employing energy-efficient motors and optimizing motor systems, businesses and individuals can reduce their electricity demand, leading to lower greenhouse gas emissions and a smaller carbon footprint.
  • Motor Disposal and Recycling: AC motors contain various materials, including metals, plastics, and electrical components. At the end of their life cycle, proper disposal or recycling is important to minimize their environmental impact. Some components, such as copper windings and steel casings, can be recycled, reducing the need for new raw materials and energy-intensive manufacturing processes. It is crucial to follow local regulations and guidelines for the disposal and recycling of motors to prevent environmental pollution and promote resource conservation.
  • Manufacturing and Production: The manufacturing and production processes associated with AC motors can have environmental implications. The extraction and processing of raw materials, such as metals and plastics, can result in habitat destruction, energy consumption, and greenhouse gas emissions. Additionally, the manufacturing processes themselves can generate waste and pollutants. Motor manufacturers can mitigate these environmental impacts by adopting sustainable practices, using recycled materials, reducing waste generation, and implementing energy-efficient production methods.
  • Life Cycle Assessment: Conducting a life cycle assessment (LCA) of AC motors can provide a holistic view of their environmental impact. An LCA considers the environmental aspects associated with the entire life cycle of the motor, including raw material extraction, manufacturing, transportation, use, and end-of-life disposal or recycling. By analyzing the different stages of the motor’s life cycle, stakeholders can identify opportunities for improvement, such as optimizing energy efficiency, reducing emissions, and implementing sustainable practices.

To address these environmental considerations, governments, organizations, and industry standards bodies have developed regulations and guidelines to promote energy efficiency and reduce the environmental impact of AC motors. These include efficiency standards, labeling programs, and incentives for the use of high-efficiency motors. Additionally, initiatives promoting motor system optimization, such as proper motor sizing, maintenance, and control, can further enhance energy efficiency and minimize environmental impact.

In summary, the environmental considerations associated with the use of AC motors include energy efficiency, greenhouse gas emissions, motor disposal and recycling, manufacturing processes, and life cycle assessment. By prioritizing energy efficiency, proper disposal, recycling, and sustainable manufacturing practices, the environmental impact of AC motors can be minimized, contributing to a more sustainable and environmentally conscious approach to motor usage.

induction motor

Where can individuals or businesses find reliable information on selecting, installing, and maintaining AC motors?

When seeking information on selecting, installing, and maintaining AC motors, individuals and businesses can refer to various reliable sources. These sources provide valuable guidance, recommendations, and best practices related to AC motors. Here are some places where one can find reliable information:

  • Manufacturer’s Documentation: AC motor manufacturers often provide detailed documentation, including product catalogs, technical specifications, installation guides, and maintenance manuals. These documents offer specific information about their motors, such as performance characteristics, electrical requirements, mounting instructions, and recommended maintenance procedures. Manufacturers’ websites are a common source for accessing these resources.
  • Industry Associations: Industry associations related to electrical engineering, motor manufacturing, or specific applications (e.g., HVAC, pumps, or industrial machinery) can be excellent resources for reliable information. These associations often publish technical articles, guidelines, and standards that cover a wide range of topics, including motor selection, installation practices, efficiency standards, and maintenance recommendations. Examples of such associations include the National Electrical Manufacturers Association (NEMA), the Institute of Electrical and Electronics Engineers (IEEE), and the Air Conditioning, Heating, and Refrigeration Institute (AHRI).
  • Professional Electricians and Engineers: Consulting with professional electricians or electrical engineers who specialize in motor applications can provide valuable insights. These professionals possess practical knowledge and experience in selecting, installing, and maintaining AC motors. They can offer personalized advice based on specific project requirements and industry best practices.
  • Energy Efficiency Programs and Agencies: Energy efficiency programs and agencies, such as government departments, utility companies, or environmental organizations, often provide resources and guidance on energy-efficient motor selection and operation. These programs may offer information on motor efficiency standards, rebate programs for high-efficiency motors, and energy-saving practices. Examples include the U.S. Department of Energy (DOE) and its Energy Star program.
  • Online Technical Forums and Communities: Online forums and communities focused on electrical engineering, motor applications, or specific industries can be valuable sources of information. Participating in these forums allows individuals and businesses to interact with experts, discuss motor-related topics, and seek advice from professionals and enthusiasts who have firsthand experience with AC motors.
  • Books and Publications: Books and technical publications dedicated to electrical engineering, motor technology, or specific applications can provide comprehensive information on AC motors. These resources cover topics ranging from motor theory and design principles to practical installation techniques and maintenance procedures. Libraries, bookstores, and online retailers offer a wide selection of relevant publications.

When accessing information from these sources, it is important to ensure that the information is up-to-date, reliable, and relevant to the specific application or requirements. Consulting multiple sources and cross-referencing information can help verify accuracy and establish a well-rounded understanding of AC motor selection, installation, and maintenance.

induction motor

What are the main components of an AC motor, and how do they contribute to its operation?

An AC motor consists of several key components that work together to facilitate its operation. These components include:

  1. Stator: The stator is the stationary part of an AC motor. It is typically made of a laminated core that provides a path for the magnetic flux. The stator contains stator windings, which are coils of wire wound around the stator core. The stator windings are connected to an AC power source and produce a rotating magnetic field when energized. The rotating magnetic field is a crucial element in generating the torque required for the motor’s operation.
  2. Rotor: The rotor is the rotating part of an AC motor. It is located inside the stator and is connected to a shaft. The rotor can have different designs depending on the type of AC motor. In an induction motor, the rotor does not have electrical connections. Instead, it contains conductive bars or coils that are short-circuited. The rotating magnetic field of the stator induces currents in the short-circuited rotor conductors, creating a magnetic field that interacts with the stator field and generates torque, causing the rotor to rotate. In a synchronous motor, the rotor contains electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed.
  3. Bearing: Bearings are used to support and facilitate the smooth rotation of the rotor shaft. They reduce friction and allow the rotor to rotate freely within the motor. Bearings are typically located at both ends of the motor shaft and are designed to withstand the axial and radial forces generated during operation.
  4. End Bells: The end bells, also known as end covers or end brackets, enclose the motor’s stator and rotor assembly. They provide mechanical support and protection for the internal components of the motor. End bells are typically made of metal and are designed to provide a housing for the bearings and secure the motor to its mounting structure.
  5. Fan or Cooling System: AC motors often generate heat during operation. To prevent overheating and ensure proper functioning, AC motors are equipped with fans or cooling systems. These help dissipate heat by circulating air or directing airflow over the motor’s components, including the stator and rotor windings. Effective cooling is crucial for maintaining the motor’s efficiency and extending its lifespan.
  6. Terminal Box or Connection Box: The terminal box is a housing located on the outside of the motor that provides access to the motor’s electrical connections. It contains terminals or connection points where external wires can be connected to supply power to the motor. The terminal box ensures a safe and secure connection of the motor to the electrical system.
  7. Additional Components: Depending on the specific design and application, AC motors may include additional components such as capacitors, centrifugal switches, brushes (in certain types of AC motors), and other control devices. These components are used for various purposes, such as improving motor performance, providing starting assistance, or enabling specific control features.

Each of these components plays a crucial role in the operation of an AC motor. The stator and rotor are the primary components responsible for generating the rotating magnetic field and converting electrical energy into mechanical motion. The bearings ensure smooth rotation of the rotor shaft, while the end bells provide structural support and protection. The fan or cooling system helps maintain optimal operating temperatures, and the terminal box allows for proper electrical connections. Additional components are incorporated as necessary to enhance motor performance and enable specific functionalities.

China OEM Single Phase High Quality AC Universal Motors for Hair Dryers   with Hot selling	China OEM Single Phase High Quality AC Universal Motors for Hair Dryers   with Hot selling
editor by CX 2023-12-07

China Best Sales Ec Brushless AC Synchronous Permanent Magnet Electric Fridge Fan Motors vacuum pump engine

Product Description

Product Description

EC MOTOR for Refrigeration is a high-performance electronically commutated motor, specifically designed for refrigeration and air conditioning systems. lt provides superior efficiency, precise control, and long-lasting reliability for demanding applications.

Features:

1) High Efficiency: 
The EC MOTOR for Refrigeration has a brushless DC design that provides up to 70% efficiency, which is significantly higher than traditional AC motors.The motor’s integrated electronic control system continually monitors operating conditions and adjusts the motor’s speed, resulting in reduced energy consumption, lower operating costs, and longer service life.

2) Precise Control: 
The motor has a smooth, continuous speed control that enables precise temperature and humidity regulation. The EC MOTOR for Refrigeration can operate at variable speeds to match system demand, making it an ideal choice forenergy-efficient systems.

3) Reduced Noise and Vibration: 
The brushless DC design and electronic control systerresult in less noise and vibration compared to traditional AC motors. This makes it anexcellent choice for quiet environments

4) Compact Design: 
The compact design of the EC MOTOR for Refrigeration provides a high power-to-size ratio, which makes it an ideal choice for space-constrained applications.

Specifications:

1) Voltage: 
The motor operates on a range of voltages, from 100V to 240V.

2) Speed: 
The motor’s speed can be controlled between 300RPM to 1800RPM depending on the application.

3) Control: 
The motor features an integrated electronic control system that provides precise speed control and system monitoring.

4) Operating Temperature:
The motor can operate in a temperature range from -40°C to +50°C

Overall, the EC MOTOR for Refrigeration is a highly efficient, reliable. and precise motor designed to meet the demands of refrigeration and air conditioning applications. lts superior performance makes it an ideal choice for OEMs and system integrators looking to improve system efficiency and reliability.

As long as you are a manufacturer of super-market refrigeration equipements, or beverage cabinets, or beer coolers etc, you will be in need of our EC Brushless Motor for Fan.
 

Product Parameters

MDAC4810A EC Brushless Motor Parameters:

MODEL Voltage
V
Maximum load SPEED
RPM
Minimum noise dB(A) Minimum vibration mm/s Maximum power 
W
Maximum efficiency
%
MDAC4810A 100-240V 230 34° 300-1800 38 1.1 20 70

LOAD/SPEED 200mm blade 230mm blade
28° 34° 28° 34°
1300RPM V V V V
1500RPM V V V X
1800RPM V X X X

Technical Parameter
Nominal voltage range 220-240VAC,100-240VAC,50/60Hz
Rotation speed range 300-  1800  rpm
Material PBT
Airflow direction Air exhaust or airintake (depending on impeller)
Direction of rotation CCW(view on drive end)
Degree of protection IP65
Insulation class “B”   VD,    “F” UL
Installation position Any
Mode of operation Continuous operation (S1)
Bearings Maintenance-free ball bearing system
Motor protection By electronics
Electrical hook-up Power cables
Protection class II(without grounding conductor)
Approvals CCC;   EAC;VDE,EN   6571-2-24,EN   6571-2-89,EN   6571-1
Fitting of attachments Guard grille and wall ring are attached to
the projecting thread ends on the
Mounting of axial impeller A plastic adapter with
catching peg and M4 screw is used to secure the impeller on the motor shaft
Ambient temperature -40ºC-50ºC

We continuously improve and pursue products that are more energy-efficient, stable, popular, and environmentally friendly. Compared to traditional covered pole motor products, EC has obvious advantages in high-efficiency and energy-saving electrodes, specifically:

Comparison details of MDAC4810A and 10W shaded pole motors:

1) Energy Saving 
It’s power consumption is around 1/3 of Shade-pole motor to meet the same function.

Such a siginificant energy saving is what your customers always wanted, considering the huge power consumption where your equiment is used for.
It’s also meeting high energy standard of North American and European market.

2) Job Saving
We have 2 models of EC Motor that are enough to cover almost all 7 models of Shade-pole motor for different refrigeration equipements, because EC Motor is designed to be speed adjustable.

– Adjustable speed saves your job of model selection for both purchaing team and technical team.
– Long life saves your job of after-sales.
– Energy sameing saves your job of explaining to your buyers.
– Wide voltage range saves your marketing policy to different markets.

Below listed the comparasion between our EC Motor and regular Shade-pole Motor:

  EC Motor 4810A Shade-Plole Motor 10W
Input Power 15W 40W
Out Power 9.5W 10W
Voltage 100-240V 110V or 220V
Height of The Motor 62mm +/-1 85mm +/-1
Noise 39.5dBA 55dBA
Motor Life 8~10years 3~5years
Bearing Ball bearing Sleeve bearing
Efficient up to 70% Max 18%
Speed 300~1800rpm 1300rpm
Certificate UL, VDE, CE, CCC, EX, Rohs UL, VDE, CE, CCC, EX, Rohs
Protect Level IP65 IP42

→Click to View More EC Motors Products!!!

Company Profile

We have our own design, research and development, testing equipment, and production line. The cost-effectiveness and after-sales service of our products are guaranteed, and we can provide technical support and customized services!

Exhibition

Certifications

With abundant technique force,we have our own researching, developing, manufacturing, inspecting and testingcenters, and imported the international advanced high-tech equipments. Our company has passed the ISO9001,ISO14001,OHS18001 international management system certificates. The products have got UL,ETL,CE,CB,and CCC certificates. Our products are not only selling strongly in more than 30 provincesand municipality,but also largely exporting to Europe,America,Australia,Middle East, Africa and South Asia. We have won an excellent reputation from the customers and friends by our product quality,price versus performance ratio and service.

FAQ

Q1: Are you a manufacturer or trader?
A1: ZHangZhoug Maidi Refrigeration Technology Co., Ltd. is a Hi-tech enterprise. We own the standard plant and office building which covering 21, 000 square meters. With abundant technique force, we have our own researching, developing, manufacturing, inspecting and testing centers, and imported the international advanced equipments.

Q2: How to replace refrigerator ec motor?
A2: We have a professional team of engineers who provide technical support and online guidance on product installation and replacement.

Q3: How do you ensure quality?
A3: We have a dedicated product research and testing center with authoritative quality management system certification: ISO9001/ISO14001/OHS18001.

Q4: How much does a refrigeration part cost?
A4: Factory price for you, not cheapest but the lowest at the same quality.

Application: Refrigerators/Beverage Cabinets/Ice Maker, etc.
Speed: Variable Speed
Number of Stator: Three-Phase
Samples:
US$ 15/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

induction motor

How do variable frequency drives (VFDs) impact the performance of AC motors?

Variable frequency drives (VFDs) have a significant impact on the performance of AC motors. A VFD, also known as a variable speed drive or adjustable frequency drive, is an electronic device that controls the speed and torque of an AC motor by varying the frequency and voltage of the power supplied to the motor. Let’s explore how VFDs impact AC motor performance:

  • Speed Control: One of the primary benefits of using VFDs is the ability to control the speed of AC motors. By adjusting the frequency and voltage supplied to the motor, VFDs enable precise speed control over a wide range. This speed control capability allows for more efficient operation of the motor, as it can be operated at the optimal speed for the specific application. It also enables variable speed operation, where the motor speed can be adjusted based on the load requirements, resulting in energy savings and enhanced process control.
  • Energy Efficiency: VFDs contribute to improved energy efficiency of AC motors. By controlling the motor speed based on the load demand, VFDs eliminate the energy wastage that occurs when motors run at full speed even when the load is light. The ability to match the motor speed to the required load reduces energy consumption and results in significant energy savings. In applications where the load varies widely, such as HVAC systems, pumps, and fans, VFDs can provide substantial energy efficiency improvements.
  • Soft Start and Stop: VFDs offer soft start and stop capabilities for AC motors. Instead of abruptly starting or stopping the motor, which can cause mechanical stress and electrical disturbances, VFDs gradually ramp up or down the motor speed. This soft start and stop feature reduces mechanical wear and tear, extends the motor’s lifespan, and minimizes voltage dips or spikes in the electrical system. It also eliminates the need for additional mechanical devices, such as motor starters or brakes, improving overall system reliability and performance.
  • Precision Control and Process Optimization: VFDs enable precise control over AC motor performance, allowing for optimized process control in various applications. The ability to adjust motor speed and torque with high accuracy enables fine-tuning of system parameters, such as flow rates, pressure, or temperature. This precision control enhances overall system performance, improves product quality, and can result in energy savings by eliminating inefficiencies or overcompensation.
  • Motor Protection and Diagnostic Capabilities: VFDs provide advanced motor protection features and diagnostic capabilities. They can monitor motor operating conditions, such as temperature, current, and voltage, and detect abnormalities or faults in real-time. VFDs can then respond by adjusting motor parameters, issuing alerts, or triggering shutdowns to protect the motor from damage. These protection and diagnostic features help prevent motor failures, reduce downtime, and enable predictive maintenance, resulting in improved motor reliability and performance.
  • Harmonics and Power Quality: VFDs can introduce harmonics into the electrical system due to the switching nature of their operation. Harmonics are undesirable voltage and current distortions that can impact power quality and cause issues in the electrical distribution network. However, modern VFDs often include built-in harmonic mitigation measures, such as line reactors or harmonic filters, to minimize harmonics and ensure compliance with power quality standards.

In summary, VFDs have a profound impact on the performance of AC motors. They enable speed control, enhance energy efficiency, provide soft start and stop capabilities, enable precision control and process optimization, offer motor protection and diagnostic features, and address power quality considerations. The use of VFDs in AC motor applications can lead to improved system performance, energy savings, increased reliability, and enhanced control over various industrial and commercial processes.

induction motor

Where can individuals or businesses find reliable information on selecting, installing, and maintaining AC motors?

When seeking information on selecting, installing, and maintaining AC motors, individuals and businesses can refer to various reliable sources. These sources provide valuable guidance, recommendations, and best practices related to AC motors. Here are some places where one can find reliable information:

  • Manufacturer’s Documentation: AC motor manufacturers often provide detailed documentation, including product catalogs, technical specifications, installation guides, and maintenance manuals. These documents offer specific information about their motors, such as performance characteristics, electrical requirements, mounting instructions, and recommended maintenance procedures. Manufacturers’ websites are a common source for accessing these resources.
  • Industry Associations: Industry associations related to electrical engineering, motor manufacturing, or specific applications (e.g., HVAC, pumps, or industrial machinery) can be excellent resources for reliable information. These associations often publish technical articles, guidelines, and standards that cover a wide range of topics, including motor selection, installation practices, efficiency standards, and maintenance recommendations. Examples of such associations include the National Electrical Manufacturers Association (NEMA), the Institute of Electrical and Electronics Engineers (IEEE), and the Air Conditioning, Heating, and Refrigeration Institute (AHRI).
  • Professional Electricians and Engineers: Consulting with professional electricians or electrical engineers who specialize in motor applications can provide valuable insights. These professionals possess practical knowledge and experience in selecting, installing, and maintaining AC motors. They can offer personalized advice based on specific project requirements and industry best practices.
  • Energy Efficiency Programs and Agencies: Energy efficiency programs and agencies, such as government departments, utility companies, or environmental organizations, often provide resources and guidance on energy-efficient motor selection and operation. These programs may offer information on motor efficiency standards, rebate programs for high-efficiency motors, and energy-saving practices. Examples include the U.S. Department of Energy (DOE) and its Energy Star program.
  • Online Technical Forums and Communities: Online forums and communities focused on electrical engineering, motor applications, or specific industries can be valuable sources of information. Participating in these forums allows individuals and businesses to interact with experts, discuss motor-related topics, and seek advice from professionals and enthusiasts who have firsthand experience with AC motors.
  • Books and Publications: Books and technical publications dedicated to electrical engineering, motor technology, or specific applications can provide comprehensive information on AC motors. These resources cover topics ranging from motor theory and design principles to practical installation techniques and maintenance procedures. Libraries, bookstores, and online retailers offer a wide selection of relevant publications.

When accessing information from these sources, it is important to ensure that the information is up-to-date, reliable, and relevant to the specific application or requirements. Consulting multiple sources and cross-referencing information can help verify accuracy and establish a well-rounded understanding of AC motor selection, installation, and maintenance.

induction motor

Are there different types of AC motors, and what are their specific applications?

Yes, there are different types of AC motors, each with its own design, characteristics, and applications. The main types of AC motors include:

  1. Induction Motors: Induction motors are the most commonly used type of AC motor. They are robust, reliable, and suitable for a wide range of applications. Induction motors operate based on the principle of electromagnetic induction. They consist of a stator with stator windings and a rotor with short-circuited conductive bars or coils. The rotating magnetic field produced by the stator windings induces currents in the rotor, creating a magnetic field that interacts with the stator field and generates torque. Induction motors are widely used in industries such as manufacturing, HVAC systems, pumps, fans, compressors, and conveyor systems.
  2. Synchronous Motors: Synchronous motors are another type of AC motor commonly used in applications that require precise speed control. They operate at synchronous speed, which is determined by the frequency of the AC power supply and the number of motor poles. Synchronous motors have a rotor with electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed. Synchronous motors are often used in applications such as industrial machinery, generators, compressors, and large HVAC systems.
  3. Brushless DC Motors: While the name suggests “DC,” brushless DC motors are actually driven by AC power. They utilize electronic commutation instead of mechanical brushes for switching the current in the motor windings. Brushless DC motors offer high efficiency, low maintenance, and precise control over speed and torque. They are commonly used in applications such as electric vehicles, robotics, computer disk drives, aerospace systems, and consumer electronics.
  4. Universal Motors: Universal motors are versatile motors that can operate on both AC and DC power. They are designed with a wound stator and a commutator rotor. Universal motors offer high starting torque and can achieve high speeds. They are commonly used in applications such as portable power tools, vacuum cleaners, food mixers, and small appliances.
  5. Shaded Pole Motors: Shaded pole motors are simple and inexpensive AC motors. They have a single-phase stator and a squirrel cage rotor. Shaded pole motors are characterized by low starting torque and relatively low efficiency. Due to their simple design and low cost, they are commonly used in applications such as small fans, refrigeration equipment, and appliances.

These are some of the main types of AC motors, each with its unique features and applications. The selection of an AC motor type depends on factors such as the required torque, speed control requirements, efficiency, cost, and environmental conditions. Understanding the specific characteristics and applications of each type allows for choosing the most suitable motor for a given application.

China Best Sales Ec Brushless AC Synchronous Permanent Magnet Electric Fridge Fan Motors   vacuum pump engine	China Best Sales Ec Brushless AC Synchronous Permanent Magnet Electric Fridge Fan Motors   vacuum pump engine
editor by CX 2023-10-20

China Servo Motor Drive Controller Cnc 400w 750w 1kw 15kw 30kw High Torque Ac sewing machine Servo Motors motor armature

Warranty: 1 YEAR
Model Number: 60 servo motor
Type: SERVO MOTOR
Frequency: 300RPM
Phase: Single-phase
Protect Feature: Waterproof
AC Voltage: 220V
Product Name: Servo Motor
Motor Type: AC Servo Motor
Rated Power: 100W/400W/750W/1500W
Working Environment: 0-40℃
Use Humidity: 20-90%RH
Vibration Resistance: 2.5G
IP Class: IP65
Response Frequency: 1KHz
Input/Output Pulse Frequency: 4Mbps
Certification: CE
Packaging Details: Common Carton Box
Port: ZheJiang Port

Products Description Product Paramenters

Product NameServo Motor
Working environment0-40℃
Use humidity20-90%RH
Vibration resistance2.5G
IP classIP65
Customized serviceOEM/ODM Support
ApplicationMedical machinery /CNC/Drone engraving machine /Embroidery machine and so on
Details Images Certifications Company Profile Finished product display Product packaging FAQ Q1: Where is your factoryA: Our factory is located in HangZhou only 1 hour from ZheJiang by high-speed railway Q2: How to choose the suitable stepper motor.A: There are several important points size and length of the stepper motor Holding torque Step angle voltage Current etc. After confirm some of them then told us We can help you to choose the suitable stepper motor Or you can sent us the model you are using We can help you to find the suitable stepper motor Q3. How do you ship the goods?A:Sea and by air, also accept customer appointed Q4: How can we know the product quality?A:We suggest you to order a sample Also You can send us email for detail photos for checkingyou cannot get enough information in the product page Q5. Can we be agent or distributor?A:Yes. welcome and we will support you. Q6. Can you do oEm or oDM service?A:Yes, we have R&d department and accept OEM and ODM service Q7: When can i receive the drawings of the stepper motor.A:We will provide the drawings of the stepper motor after you place the orde. Q8: How long is the warranty timeA: 12 months and we provide life-long technical service and after sale service.

How to Select a Gear Motor

A gearmotor is an electrical machine that transfers energy from one place to another. There are many types of gearmotors. This article will discuss the types of gearmotors, including Angular geared motors, Planetary gearboxes, Hydraulic gear motors, and Croise motors. In addition to its uses, gearmotors have many different characteristics. In addition, each type has distinct advantages and disadvantages. Listed below are a few tips on selecting a gearmotor.

Angular geared motors

Angular geared motors are the optimum drive element for applications where torques, forces, and motions need to be transferred at an angle. Compared to other types of geared motors, these have few moving parts, a compact design, and a long life. Angular geared motors are also highly efficient in travel drive applications. In addition to their durability, they have a low maintenance requirement and are highly corrosion-resistant.
Helical worm geared motors are a low-cost solution for drives that employ angular geared motors. They combine a worm gear stage and helical input stage to offer higher efficiency than pure worm geared motors. This drive solution is highly reliable and noise-free. Angular geared motors are often used in applications where noise is an issue, and helical worm geared motors are particularly quiet.
The gear ratio of an angular geared motor depends on the ratio between its input and output shaft. A high-quality helical geared motor has a relatively low mechanical noise level, and can be installed in almost any space. The torque of a helical geared motor can be measured by using frequency measurement equipment. The energy efficiency of angular geared motors is one of the most important factors when choosing a motor. Its symmetrical arrangement also allows it to operate in low-speed environments.
When selecting the right angular geared motor, it is important to keep in mind that increased torque will lead to poor output performance. Once a gear motor reaches its stall torque, it will no longer function properly. This makes it important to consult a performance curve to choose the appropriate motor. Most DC motor manufacturers are more than happy to provide these to customers upon request. Angular geared motors are more expensive than conventional worm gear motors.
Motor

Planetary gearboxes

Planetary gearboxes are used in industrial machinery to generate higher torque and power density. There are three main types of planetary gearboxes: double stage, triple stage, and multistage. The central sun gear transfers torque to a group of planetary gears, while the outer ring and spindle provide drive to the motor. The design of planetary gearboxes delivers up to 97% of the power input.
The compact size of planetary gears results in excellent heat dissipation. In some applications, lubrication is necessary to improve durability. Nevertheless, if you are looking for high speed transmission, you should consider the additional features, such as low noise, corrosion resistance, and construction. Some constructors are better than others. Some are quick to respond, while others are unable to ship their products in a timely fashion.
The main benefit of a planetary gearbox is its compact design. Its lightweight design makes it easy to install, and the efficiency of planetary gearboxes is up to 0.98%. Another benefit of planetary gearboxes is their high torque capacity. These gearboxes are also able to work in applications with limited space. Most modern automatic transmissions in the automotive industry use planetary gears.
In addition to being low in cost, planetary gearboxes are a great choice for many applications. Neugart offers both compact and right angle versions. The right angle design offers a high power-to-weight ratio, making it ideal for applications where torque is needed to be transmitted in reverse mode. So if you’re looking for an efficient way to move heavy machinery around, planetary gearboxes can be a great choice.
Another advantage of planetary gearboxes is their ability to be easily and rapidly changed from one application to another. Since planetary gears are designed to be flexible, you don’t have to buy new ones if you need to change gear ratios. You can also use planetary gears in different industries and save on safety stock by sharing common parts. These gears are able to withstand high shock loads and demanding conditions.
Motor

Hydraulic gear motors

Hydraulic gear motors are driven by oil that is pumped into a gear box and causes the gears to rotate. This method of energy production is quiet and inexpensive. The main drawbacks of hydraulic gear motors are that they are noisy and inefficient at low speeds. The other two types of hydraulic motors are piston and vane-type hydraulic motors. The following are some common benefits of hydraulic gear motors.
A hydraulic gear motor is composed of two gears – a driven gear and an idler. The driven gear is attached to the output shaft via a key. High-pressure oil flows into the housing between the gear tips and the motor housing, and the oil then exits through an outlet port. Unlike a conventional gear motor, the gears mesh to prevent the oil from flowing backward. As a result, they are an excellent choice for agricultural and industrial applications.
The most common hydraulic gear motors feature a gerotor and a drive gear. These gears mesh with a larger gear to produce rotation. There are also three basic variations of gear motors: roller-gerotor, gerotor, and differential. The latter produces higher torque and less friction than the previous two. These differences make it difficult to choose which type is the best for your needs. A high-performance gear motor will last longer than an ordinary one.
Radial piston hydraulic motors operate in the opposite direction to the reciprocating shaft of an electric gearmotor. They have nine pistons arranged around a common center line. Fluid pressure causes the pistons to reciprocate, and when they are stationary, the pistons push the fluid out and move back in. Because of the high pressure created by the fluid, they can rotate at speeds up to 25,000RPM. In addition, hydraulic gear motors are highly efficient, allowing them to be used in a wide range of industrial and commercial applications.
Hydraulic gear motors complement hydraulic pumps and motors. They are also available in reversible models. To choose the right hydraulic motor for your project, take time to gather all the necessary information about the installation process. Some types require specialized expertise or complicated installation. Also, there are some differences between closed and open-loop hydraulic motors. Make sure to discuss the options with a professional before you make a decision.
Motor

Croise motors

There are many advantages to choosing a Croise gear motor. It is highly compact, with less weight and space than standard motors. Its right-angle shaft and worm gear provide smooth, quiet operation. A silent-type brake ensures no metallic sound during operation. It also offers excellent positioning accuracy and shock resistance. This is why this motor is ideal for high-frequency applications. Let’s take a closer look.
A properly matched gearmotor will provide maximum torque output in a specified period. Its maximum developing torque is typically the rated output torque. A one-twelfth-horsepower (1/8 horsepower) motor can meet torque requirements of six inch-pounds, without exceeding its breakdown rating. This lower-cost unit allows for production variations and allows the customer to use a less powerful motor. Croise gear motors are available in a variety of styles.

China Servo Motor Drive Controller Cnc 400w 750w 1kw 15kw 30kw High Torque Ac sewing machine Servo Motors     motor armatureChina Servo Motor Drive Controller Cnc 400w 750w 1kw 15kw 30kw High Torque Ac sewing machine Servo Motors     motor armature
editor by czh

China Original Japan machine motor MHMD082P1U AC servo motors servo motor cnc ac motor

Warranty: 3months-1year, 12 months for new, 3 months for used
Model Number: MHMD082P1U
Type: SERVO MOTOR
Frequency: r/min 3000
Phase: Three-phase
AC Voltage: 120 V
Product Name: AC servo motors
Condition: 100% Original
Shipping terms: All terms are accepted
Payment terms: All terms are accepted
Lead Time: 1-3 Days
Delivery Time: 3-5 Days
Stock: Available
Package: Packing in cartons or wooden cases
Certification: ce
Packaging Details: Safe Packing
Port: ShenZhen, GuangZhou, HongKong

Product display

Product name:AC servo motor
Model Number:MHMD082P1U
Condition:Original
Warranty:12 months for new, 3 months for used
Quality:Very good
Payment term:All terms are accepted
Lead time:1-2 days
Stock:Available
Shipping TermsAll terms are accepted
Company Profile
AmplifierMotorI/O
PCBEncoderController
view more>> Exhibition Packaging FAQ

Benefits of a Planetary Motor

If you’re looking for an affordable way to power a machine, consider purchasing a Planetary Motor. These units are designed to provide a massive range of gear reductions, and are capable of generating much higher torques and torque density than other types of drive systems. This article will explain why you should consider purchasing one for your needs. And we’ll also discuss the differences between a planetary and spur gear system, as well as how you can benefit from them.

planetary gears

Planetary gears in a motor are used to reduce the speed of rotation of the armature 8. The reduction ratio is determined by the structure of the planetary gear device. The output shaft 5 rotates through the device with the assistance of the ring gear 4. The ring gear 4 engages with the pinion 3 once the shaft is rotated to the engagement position. The transmission of rotational torque from the ring gear to the armature causes the motor to start.
The axial end surface of a planetary gear device has two circular grooves 21. The depressed portion is used to retain lubricant. This lubricant prevents foreign particles from entering the planetary gear space. This feature enables the planetary gear device to be compact and lightweight. The cylindrical portion also minimizes the mass inertia. In this way, the planetary gear device can be a good choice for a motor with limited space.
Because of their compact footprint, planetary gears are great for reducing heat. In addition, this design allows them to be cooled. If you need high speeds and sustained performance, you may want to consider using lubricants. The lubricants present a cooling effect and reduce noise and vibration. If you want to maximize the efficiency of your motor, invest in a planetary gear hub drivetrain.
The planetary gear head has an internal sun gear that drives the multiple outer gears. These gears mesh together with the outer ring that is fixed to the motor housing. In industrial applications, planetary gears are used with an increasing number of teeth. This distribution of power ensures higher efficiency and transmittable torque. There are many advantages of using a planetary gear motor. These advantages include:
Motor

planetary gearboxes

A planetary gearbox is a type of drivetrain in which the input and output shafts are connected with a planetary structure. A planetary gearset can have three main components: an input gear, a planetary output gear, and a stationary position. Different gears can be used to change the transmission ratios. The planetary structure arrangement gives the planetary gearset high rigidity and minimizes backlash. This high rigidity is crucial for quick start-stop cycles and rotational direction.
Planetary gears need to be lubricated regularly to prevent wear and tear. In addition, transmissions must be serviced regularly, which can include fluid changes. The gears in a planetary gearbox will wear out with time, and any problems should be repaired immediately. However, if the gears are damaged, or if they are faulty, a planetary gearbox manufacturer will repair it for free.
A planetary gearbox is typically a 2-speed design, but professional manufacturers can provide triple and single-speed sets. Planetary gearboxes are also compatible with hydraulic, electromagnetic, and dynamic braking systems. The first step to designing a planetary gearbox is defining your application and the desired outcome. Famous constructors use a consultative modeling approach, starting each project by studying machine torque and operating conditions.
As the planetary gearbox is a compact design, space is limited. Therefore, bearings need to be selected carefully. The compact needle roller bearings are the most common option, but they cannot tolerate large axial forces. Those that can handle high axial forces, such as worm gears, should opt for tapered roller bearings. So, what are the advantages and disadvantages of a helical gearbox?

planetary gear motors

When we think of planetary gear motors, we tend to think of large and powerful machines, but in fact, there are many smaller, more inexpensive versions of the same machine. These motors are often made of plastic, and can be as small as six millimeters in diameter. Unlike their larger counterparts, they have only one gear in the transmission, and are made with a small diameter and small number of teeth.
They are similar to the solar system, with the planets rotating around a sun gear. The planet pinions mesh with the ring gear inside the sun gear. All of these gears are connected by a planetary carrier, which is the output shaft of the gearbox. The ring gear and planetary carrier assembly are attached to each other through a series of joints. When power is applied to any of these members, the entire assembly will rotate.
Compared to other configurations, planetary gearmotors are more complicated. Their construction consists of a sun gear centered in the center and several smaller gears that mesh with the central sun gear. These gears are enclosed in a larger internal tooth gear. This design allows them to handle larger loads than conventional gear motors, as the load is distributed among several gears. This type of motor is typically more expensive than other configurations, but can withstand the higher-load requirements of some machines.
Because they are cylindrical in shape, planetary gear motors are incredibly versatile. They can be used in various applications, including automatic transmissions. They are also used in applications where high-precision and speed are necessary. Furthermore, the planetary gear motor is robust and is characterized by low vibrations. The advantages of using a planetary gear motor are vast and include:
Motor

planetary gears vs spur gears

A planetary motor uses multiple teeth to share the load of rotating parts. This gives planetary gears high stiffness and low backlash – often as low as one or two arc minutes. These characteristics are important for applications that undergo frequent start-stop cycles or rotational direction changes. This article discusses the benefits of planetary gears and how they differ from spur gears. You can watch the animation below for a clearer understanding of how they operate and how they differ from spur gears.
Planetary gears move in a periodic manner, with a relatively small meshing frequency. As the meshing frequency increases, the amplitude of the frequency also increases. The amplitude of this frequency is small at low clearance values, and increases dramatically at higher clearance levels. The amplitude of the frequency is higher when the clearance reaches 0.2-0.6. The amplitude increases rapidly, whereas wear increases slowly after the initial 0.2-0.6-inch-wide clearance.
In high-speed, high-torque applications, a planetary motor is more effective. It has multiple contact points for greater torque and higher speed. If you are not sure which type to choose, you can consult with an expert and design a custom gear. If you are unsure of what type of motor you need, contact Twirl Motor and ask for help choosing the right one for your application.
A planetary gear arrangement offers a number of advantages over traditional fixed-axis gear system designs. The compact size allows for lower loss of effectiveness, and the more planets in the gear system enhances the torque density and capacity. Another benefit of a planetary gear system is that it is much stronger and more durable than its spur-gear counterpart. Combined with its many advantages, a planetary gear arrangement offers a superior solution to your shifting needs.
Motor

planetary gearboxes as a compact alternative to pinion-and-gear reducers

While traditional pinion-and-gear reducer design is bulky and complex, planetary gearboxes are compact and flexible. They are suitable for many applications, especially where space and weight are issues, as well as torque and speed reduction. However, understanding their mechanism and working isn’t as simple as it sounds, so here are some of the key benefits of planetary gearing.
Planetary gearboxes work by using two planetary gears that rotate around their own axes. The sun gear is used as the input, while the planetary gears are connected via a casing. The ratio of these gears is -Ns/Np, with 24 teeth in the sun gear and -3/2 on the planet gear.
Unlike traditional pinion-and-gear reducer designs, planetary gearboxes are much smaller and less expensive. A planetary gearbox is about 50% smaller and weighs less than a pinion-and-gear reducer. The smaller gear floats on top of three large gears, minimizing the effects of vibration and ensuring consistent transmission over time.
Planetary gearboxes are a good alternative to pinion-and-gear drive systems because they are smaller, less complex and offer a higher reduction ratio. Their meshing arrangement is similar to the Milky Way, with the sun gear in the middle and two or more outer gears. They are connected by a carrier that sets their spacing and incorporates an output shaft.
Compared to pinion-and-gear reduces, planetary gearboxes offer higher speed reduction and torque capacity. As a result, planetary gearboxes are small and compact and are often preferred for space-constrained applications. But what about the high torque transfer? If you’re looking for a compact alt

China Original Japan machine motor MHMD082P1U AC servo motors servo motor cnc     ac motor	China Original Japan machine motor MHMD082P1U AC servo motors servo motor cnc     ac motor
editor by czh

China 3 Phase 220V AC Motors Worm Gearbox Motor Reducer with Induction Motor 1400rpm manufacturer

Warranty: 1 year
Model Number: MS-90s-4
Type: Asynchronous Motor, Basic, braking, QABP, QABP and braking
Frequency: 50hz,60hz, or 50hz/60hz
Phase: Three-phase
Protect Feature: Totally Enclosed
AC Voltage: 200v-720v
Efficiency: IE 2
Speed: Constant Speed
Usage: Universal
IM: B3, B35, B5
Duty: S1
Function: Driving
Housing: AL
Accessory: Rain cover, Over-Heat Protection, encoder
Production level: IP54/IP55
Certification: CE
Packaging Details: Carton box or wooden base, according to your requirements
Port: ZheJiang or HangZhou

3 Phase 220V AC Motors Worm Gearbox Motor Reducer with Induction Motor 1400rpm

The Useage of motor is very convenient and has the ability of self-starting, acclerating, braking, reversing and stoppng, can meet various operation requirements. Wthen the motor woking, has high efficency, wwithout dust and smell, no pollution and noise. Becase of its more advantages, the motor are widely used in industry, agricultural production, transportation as well as household appliances, medical electrical qpuipment etc.

Type
MS series Three Phase Electric Motor
1, Frame Size:
63-160L
2, Rated Output:
0.12-15kw
3, Rated Voltage:
380 V or to be your request
4, Rated Frequency:
50 Hz / 60 Hz
5, Poles:
4
6, Speed:
1400r/min
7, Ambient Temperature:
-15°C < θ < 40°C
8.Insulation class
F
9, Mounting:
B3; B35; B14; B5
10 OEM:
Special motors can be designed
11, Protection Class
IP55
12, Cooling Method:
ICO 141 Standards
13. Working efficiency
56%-94%
14. Matched engine
Speed reducer
15, Packing:
Strong carton or wooden base

No.
Description
No.
Description
No.
Description
1
shaft sleeve
11
rubber blanket
21
snap ring
2
thrower
12
wiring board
22
fan cowl
3
bolt
13
terminal box base
23
nameplate
4
spring cushion
14
rubber blanket
24
rivet
5
end cap
15
terminal box cap
25
B5frame
6
bearing
16
bolt
26
B5flange
7
spindle
17
cable gland
27
B14flange
8
rotor
18
corrugated gasket
28
seal ring
9
stator winding
19
bolt
29
key
10
stator
20
fan

Packaging & Shipping

Production Flow

Equipment
Our Services(1) With excellent quality and Reasonable price
(2) Promise to delivery on time
(3) Safe, reliable, economical and durable
(4) Stable transmission, quiet operation
(5) High heat-radiating efficiency, high carrying ability
(6) Every product must be tested before sending

Company Information

The Basics of a Planetary Motor

A Planetary Motor is a type of gearmotor that uses multiple planetary gears to deliver torque. This system minimizes the chances of failure of individual gears and increases output capacity. Compared to the planetary motor, the spur gear motor is less complex and less expensive. However, a spur gear motor is generally more suitable for applications requiring low torque. This is because each gear is responsible for the entire load, limiting its torque.

Self-centering planetary gears

This self-centering mechanism for a planetary motor is based on a helical arrangement. The helical structure involves a sun-planet, with its crown and slope modified. The gears are mounted on a ring and share the load evenly. The helical arrangement can be either self-centering or self-resonant. This method is suited for both applications.
A helical planetary gear transmission is illustrated in FIG. 1. A helical configuration includes an output shaft 18 and a sun gear 18. The drive shaft extends through an opening in the cover to engage drive pins on the planet carriers. The drive shaft of the planetary gears can be fixed to the helical arrangement or can be removable. The transmission system is symmetrical, allowing the output shaft of the planetary motor to rotate radially in response to the forces acting on the planet gears.
A flexible pin can improve load sharing. This modification may decrease the face load distribution, but increases the (K_Hbeta) parameter. This effect affects the gear rating and life. It is important to understand the effects of flexible pins. It is worth noting that there are several other disadvantages of flexible pins in helical PGSs. The benefits of flexible pins are discussed below.
Using self-centering planetary gears for a helical planetary motor is essential for symmetrical force distribution. These gears ensure the symmetry of force distribution. They can also be used for self-centering applications. Self-centering planetary gears also guarantee the proper force distribution. They are used to drive a planetary motor. The gearhead is made of a ring gear, and the output shaft is supported by two ball bearings. Self-centering planetary gears can handle a high torque input, and can be suited for many applications.
To solve for a planetary gear mechanism, you need to find its pitch curve. The first step is to find the radius of the internal gear ring. A noncircular planetary gear mechanism should be able to satisfy constraints that can be complex and nonlinear. Using a computer, you can solve for these constraints by analyzing the profile of the planetary wheel’s tooth curve.
Motor

High torque

Compared to the conventional planetary motors, high-torque planetary motors have a higher output torque and better transmission efficiency. The high-torque planetary motors are designed to withstand large loads and are used in many types of applications, such as medical equipment and miniature consumer electronics. Their compact design makes them suitable for small space-saving applications. In addition, these motors are designed for high-speed operation.
They come with a variety of shaft configurations and have a wide range of price-performance ratios. The FAULHABER planetary gearboxes are made of plastic, resulting in a good price-performance ratio. In addition, plastic input stage gears are used in applications requiring high torques, and steel input stage gears are available for higher speeds. For difficult operating conditions, modified lubrication is available.
Various planetary gear motors are available in different sizes and power levels. Generally, planetary gear motors are made of steel, brass, or plastic, though some use plastic for their gears. Steel-cut gears are the most durable, and are ideal for applications that require a high amount of torque. Similarly, nickel-steel gears are more lubricated and can withstand a high amount of wear.
The output torque of a high-torque planetary gearbox depends on its rated input speed. Industrial-grade high-torque planetary gearboxes are capable of up to 18000 RPM. Their output torque is not higher than 2000 nm. They are also used in machines where a planet is decelerating. Their working temperature ranges between 25 and 100 degrees Celsius. For best results, it is best to choose the right size for the application.
A high-torque planetary gearbox is the most suitable type of high-torque planetary motor. It is important to determine the deceleration ratio before buying one. If there is no product catalog that matches your servo motor, consider buying a close-fitting high-torque planetary gearbox. There are also high-torque planetary gearboxes available for custom-made applications.
Motor

High efficiency

A planetary gearbox is a type of mechanical device that is used for high-torque transmission. This gearbox is made of multiple pairs of gears. Large gears on the output shaft mesh with small gears on the input shaft. The ratio between the big and small gear teeth determines the transmittable torque. High-efficiency planetary gearheads are available for linear motion, axial loads, and sterilizable applications.
The AG2400 high-end gear unit series is ideally matched to Beckhoff’s extensive line of servomotors and gearboxes. Its single-stage and multi-stage transmission ratios are highly flexible and can be matched to different robot types. Its modified lubrication helps it operate in difficult operating conditions. These high-performance gear units are available in a wide range of sizes.
A planetary gear motor can be made of steel, nickel-steel, or brass. In addition to steel, some models use plastic. The planetary gears share work between multiple gears, making it easy to transfer high amounts of power without putting a lot of stress on the gears. The gears in a planetary gear motor are held together by a movable arm. High-efficiency planetary gear motors are more efficient than traditional gearmotors.
While a planetary gear motor can generate torque, it is more efficient and cheaper to produce. The planetary gear system is designed with all gears operating in synchrony, minimizing the chance of a single gear failure. The efficiency of a planetary gearmotor makes it a popular choice for high-torque applications. This type of motor is suitable for many applications, and is less expensive than a standard geared motor.
The planetary gearbox is a combination of a planetary type gearbox and a DC motor. The planetary gearbox is compact, versatile, and efficient, and can be used in a wide range of industrial environments. The planetary gearbox with an HN210 DC motor is used in a 22mm OD, PPH, and ph configuration with voltage operating between 6V and 24V. It is available in many configurations and can be custom-made to meet your application requirements.
Motor

High cost

In general, planetary gearmotors are more expensive than other configurations of gearmotors. This is due to the complexity of their design, which involves the use of a central sun gear and a set of planetary gears which mesh with each other. The entire assembly is enclosed in a larger internal tooth gear. However, planetary motors are more effective for higher load requirements. The cost of planetary motors varies depending on the number of gears and the number of planetary gears in the system.
If you want to build a planetary gearbox, you can purchase a gearbox for the motor. These gearboxes are often available with several ratios, and you can use any one to create a custom ratio. The cost of a gearbox depends on how much power you want to move with the gearbox, and how much gear ratio you need. You can even contact your local FRC team to purchase a gearbox for the motor.
Gearboxes play a major role in determining the efficiency of a planetary gearmotor. The output shafts used for this type of motor are usually made of steel or nickel-steel, while those used in planetary gearboxes are made from brass or plastic. The former is the most durable and is best for applications that require high torque. The latter, however, is more absorbent and is better at holding lubricant.
Using a planetary gearbox will allow you to reduce the input power required for the stepper motor. However, this is not without its downsides. A planetary gearbox can also be replaced with a spare part. A planetary gearbox is inexpensive, and its spare parts are inexpensive. A planetary gearbox has low cost compared to a planetary motor. Its advantages make it more desirable in certain applications.
Another advantage of a planetary gear unit is the ability to handle ultra-low speeds. Using a planetary gearbox allows stepper motors to avoid resonance zones, which can cause them to crawl. In addition, the planetary gear unit allows for safe and efficient cleaning. So, whether you’re considering a planetary gear unit for a particular application, these gear units can help you get exactly what you need.

China 3 Phase 220V AC Motors Worm Gearbox Motor Reducer with Induction Motor 1400rpm     manufacturer China 3 Phase 220V AC Motors Worm Gearbox Motor Reducer with Induction Motor 1400rpm     manufacturer
editor by czh

China 60W Electrical ac motors 5IK60GN adjustable speed gear motor car motor

Warranty: 3months-1year
Model Number: 5IK60GN
Type: GEAR MOTOR
Frequency: 50/60HZ
Phase: Single-phase
AC Voltage: 220/380
Efficiency: IE 2
Certification: CCC CE
WARRANTY: 1 YEAR
POWER: 60W
Packaging Details: 1set/ctn
Port: HangZhou

Home >> All Products >>Mini gear speed reducer motor
small reduce motor

Name of commodityAdjustable motor
Model of productMicro gear reducer motor
The installation formVertical installation
The layout formCoaxial
Tooth surface hardnessHard tooth surface
Product usesSpeed reducer
Brand of productXIUSHI
Rated power6w-250w
Voltage range
220v,380v
Transmission speed ratio3K-400K

Contact us to send an inquiry !

OPERATING CONDITIONS

  • Ambient temperature:-15℃<0<40℃
  • Altitude:not exceed 1000m
  • Rated voltage:220v,380v
  • Rated frequency:50Hz/60Hz
  • Duty:S1(continuous)
  • Insulation class:B,F,H
  • Protection class:IP54,IP55
  • Cooling method:IC0141
  • ABOUT PRICE
    We are factory direct selling network, so we have the advantage of price, the service is guaranteed. The speed reduction motor is guaranteed for 1 year. Please do not compare the price of our products with other 3 motors or other manufacturers.
    Size
    Product show
    Application
    Company Information
    Contact

    The Basics of a Planetary Motor

    A Planetary Motor is a type of gearmotor that uses multiple planetary gears to deliver torque. This system minimizes the chances of failure of individual gears and increases output capacity. Compared to the planetary motor, the spur gear motor is less complex and less expensive. However, a spur gear motor is generally more suitable for applications requiring low torque. This is because each gear is responsible for the entire load, limiting its torque.

    Self-centering planetary gears

    This self-centering mechanism for a planetary motor is based on a helical arrangement. The helical structure involves a sun-planet, with its crown and slope modified. The gears are mounted on a ring and share the load evenly. The helical arrangement can be either self-centering or self-resonant. This method is suited for both applications.
    A helical planetary gear transmission is illustrated in FIG. 1. A helical configuration includes an output shaft 18 and a sun gear 18. The drive shaft extends through an opening in the cover to engage drive pins on the planet carriers. The drive shaft of the planetary gears can be fixed to the helical arrangement or can be removable. The transmission system is symmetrical, allowing the output shaft of the planetary motor to rotate radially in response to the forces acting on the planet gears.
    A flexible pin can improve load sharing. This modification may decrease the face load distribution, but increases the (K_Hbeta) parameter. This effect affects the gear rating and life. It is important to understand the effects of flexible pins. It is worth noting that there are several other disadvantages of flexible pins in helical PGSs. The benefits of flexible pins are discussed below.
    Using self-centering planetary gears for a helical planetary motor is essential for symmetrical force distribution. These gears ensure the symmetry of force distribution. They can also be used for self-centering applications. Self-centering planetary gears also guarantee the proper force distribution. They are used to drive a planetary motor. The gearhead is made of a ring gear, and the output shaft is supported by two ball bearings. Self-centering planetary gears can handle a high torque input, and can be suited for many applications.
    To solve for a planetary gear mechanism, you need to find its pitch curve. The first step is to find the radius of the internal gear ring. A noncircular planetary gear mechanism should be able to satisfy constraints that can be complex and nonlinear. Using a computer, you can solve for these constraints by analyzing the profile of the planetary wheel’s tooth curve.
    Motor

    High torque

    Compared to the conventional planetary motors, high-torque planetary motors have a higher output torque and better transmission efficiency. The high-torque planetary motors are designed to withstand large loads and are used in many types of applications, such as medical equipment and miniature consumer electronics. Their compact design makes them suitable for small space-saving applications. In addition, these motors are designed for high-speed operation.
    They come with a variety of shaft configurations and have a wide range of price-performance ratios. The FAULHABER planetary gearboxes are made of plastic, resulting in a good price-performance ratio. In addition, plastic input stage gears are used in applications requiring high torques, and steel input stage gears are available for higher speeds. For difficult operating conditions, modified lubrication is available.
    Various planetary gear motors are available in different sizes and power levels. Generally, planetary gear motors are made of steel, brass, or plastic, though some use plastic for their gears. Steel-cut gears are the most durable, and are ideal for applications that require a high amount of torque. Similarly, nickel-steel gears are more lubricated and can withstand a high amount of wear.
    The output torque of a high-torque planetary gearbox depends on its rated input speed. Industrial-grade high-torque planetary gearboxes are capable of up to 18000 RPM. Their output torque is not higher than 2000 nm. They are also used in machines where a planet is decelerating. Their working temperature ranges between 25 and 100 degrees Celsius. For best results, it is best to choose the right size for the application.
    A high-torque planetary gearbox is the most suitable type of high-torque planetary motor. It is important to determine the deceleration ratio before buying one. If there is no product catalog that matches your servo motor, consider buying a close-fitting high-torque planetary gearbox. There are also high-torque planetary gearboxes available for custom-made applications.
    Motor

    High efficiency

    A planetary gearbox is a type of mechanical device that is used for high-torque transmission. This gearbox is made of multiple pairs of gears. Large gears on the output shaft mesh with small gears on the input shaft. The ratio between the big and small gear teeth determines the transmittable torque. High-efficiency planetary gearheads are available for linear motion, axial loads, and sterilizable applications.
    The AG2400 high-end gear unit series is ideally matched to Beckhoff’s extensive line of servomotors and gearboxes. Its single-stage and multi-stage transmission ratios are highly flexible and can be matched to different robot types. Its modified lubrication helps it operate in difficult operating conditions. These high-performance gear units are available in a wide range of sizes.
    A planetary gear motor can be made of steel, nickel-steel, or brass. In addition to steel, some models use plastic. The planetary gears share work between multiple gears, making it easy to transfer high amounts of power without putting a lot of stress on the gears. The gears in a planetary gear motor are held together by a movable arm. High-efficiency planetary gear motors are more efficient than traditional gearmotors.
    While a planetary gear motor can generate torque, it is more efficient and cheaper to produce. The planetary gear system is designed with all gears operating in synchrony, minimizing the chance of a single gear failure. The efficiency of a planetary gearmotor makes it a popular choice for high-torque applications. This type of motor is suitable for many applications, and is less expensive than a standard geared motor.
    The planetary gearbox is a combination of a planetary type gearbox and a DC motor. The planetary gearbox is compact, versatile, and efficient, and can be used in a wide range of industrial environments. The planetary gearbox with an HN210 DC motor is used in a 22mm OD, PPH, and ph configuration with voltage operating between 6V and 24V. It is available in many configurations and can be custom-made to meet your application requirements.
    Motor

    High cost

    In general, planetary gearmotors are more expensive than other configurations of gearmotors. This is due to the complexity of their design, which involves the use of a central sun gear and a set of planetary gears which mesh with each other. The entire assembly is enclosed in a larger internal tooth gear. However, planetary motors are more effective for higher load requirements. The cost of planetary motors varies depending on the number of gears and the number of planetary gears in the system.
    If you want to build a planetary gearbox, you can purchase a gearbox for the motor. These gearboxes are often available with several ratios, and you can use any one to create a custom ratio. The cost of a gearbox depends on how much power you want to move with the gearbox, and how much gear ratio you need. You can even contact your local FRC team to purchase a gearbox for the motor.
    Gearboxes play a major role in determining the efficiency of a planetary gearmotor. The output shafts used for this type of motor are usually made of steel or nickel-steel, while those used in planetary gearboxes are made from brass or plastic. The former is the most durable and is best for applications that require high torque. The latter, however, is more absorbent and is better at holding lubricant.
    Using a planetary gearbox will allow you to reduce the input power required for the stepper motor. However, this is not without its downsides. A planetary gearbox can also be replaced with a spare part. A planetary gearbox is inexpensive, and its spare parts are inexpensive. A planetary gearbox has low cost compared to a planetary motor. Its advantages make it more desirable in certain applications.
    Another advantage of a planetary gear unit is the ability to handle ultra-low speeds. Using a planetary gearbox allows stepper motors to avoid resonance zones, which can cause them to crawl. In addition, the planetary gear unit allows for safe and efficient cleaning. So, whether you’re considering a planetary gear unit for a particular application, these gear units can help you get exactly what you need.

    China 60W Electrical ac motors 5IK60GN adjustable speed gear motor     car motor		China 60W Electrical ac motors 5IK60GN adjustable speed gear motor     car motor
    editor by czh

    NEMA Custom made in China – replacement parts – in Quito Ecuador Premium Efficient UL approved 56 Frame 1Phase tefc 115 230V 60Hz  Capacitor start AC Induction Electric Motors with top quality

    NEMA  Custom  made in China - replacement parts -  in Quito Ecuador  Premium Efficient UL approved 56 Frame 1Phase tefc 115 230V 60Hz  Capacitor start AC Induction Electric Motors with top quality

    We – EPG Group the most significant gearbox & motors , couplings and gears manufacturing facility in China with 5 diverse branches. For a lot more specifics: Mobile/whatsapp/telegram/Kakao us at: 0086~13083988828 13858117778083988828

    NEMA Universal 56C 56J  1/4HP-2HP single stage weighty duty capacitor start off Electric motor with UL certification.
    We can also create and provide 48frame motors,56Y frame,56H Frame,143T,145T,184T,213T,215T body motors.

    NEMA Standard Sequence Solitary Phase Asynchronus Motor is Created and made according to United states of america NEMA normal and Canada normal.
    NEMA series solitary stage asynchronous motor has the robust factors like novel pattern,excellent technics and dependable efficiency.The motor functions by reduced temerature rise,minimal sounds and vibration,as nicely as higher effectiveness.

    The voltage of the sequence motor is one hundred fifteen/208-230V,and the frequency is 60HZ.

    Amid the series of motors,the capacitor start off and two valued capacitor motor is ideal for air compressor,modest equipment resource and other fields necessitating increased commencing torque.

    The capacitor-working motor is suitable for ventilation,health-related instrument and the fields of mild and none loading when starts off.

     

    Features:

    • Considerably increased efficiency than normal IEC motors
    • Sealed bearings
    • Shaft flinger – output shaft
    • High starting up torque
    • Weep holes supply condensation drains
    • Gasketed capacitor housing and conduit bins
    • Handbook overload protected (Single Stage versions)
    • Typically shut thermostats (3 stage models)
    • one.fifteen Services Issue
    • Quality productive design

    Rewards:

    • Larger efficiency to support decrease utility fees
    • Sealed ball bearings to supply additional defense and extended existence.
    • Large starting torque for enhanced performance.
    • Reduced temperature handbook overload protector safeguards in opposition to excessive overload.

    Solitary and three phase, rigid foundation, TEFC, and rolled metal AC styles are offered for programs these kinds of as feeder, conveyors, grain elevators, silo unloaders and other demanding farm gear.

    The use of authentic products manufacturer’s (OEM) element figures or logos , e.g. CASE® and John Deere® are for reference purposes only and for indicating solution use and compatibility. Our firm and the shown alternative elements contained herein are not sponsored, approved, or produced by the OEM.

    NEMA  Custom  made in China - replacement parts -  in Quito Ecuador  Premium Efficient UL approved 56 Frame 1Phase tefc 115 230V 60Hz  Capacitor start AC Induction Electric Motors with top quality

    NEMA  Custom  made in China - replacement parts -  in Quito Ecuador  Premium Efficient UL approved 56 Frame 1Phase tefc 115 230V 60Hz  Capacitor start AC Induction Electric Motors with top quality